matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenrelative Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 So 02.09.2018
Autor: Valkyrion

Für die Entscheidung welches relative Extrema bei einer Funktion mit zwei Variablen vorliegt untersucht man, ob [mm] f_{xx}(x_{0},y_{0}) [/mm] positiv oder negativ ist. Spielt dabei [mm] f_{yy}(x_{0},y_{0}) [/mm] keine Rolle? Warum? Oder kann man die Frage nach den relativen Extrema auch anhand von [mm] f_{yy}(x_{0},y_{0}) [/mm] entscheiden?

        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 02.09.2018
Autor: Al-Chwarizmi


> Für die Entscheidung welches relative Extrema bei einer
> Funktion mit zwei Variablen vorliegt untersucht man, ob
> [mm]f_{xx}(x_{0},y_{0})[/mm] positiv oder negativ ist. Spielt dabei
> [mm]f_{yy}(x_{0},y_{0})[/mm] keine Rolle? Warum? Oder kann man die
> Frage nach den relativen Extrema auch anhand von
> [mm]f_{yy}(x_{0},y_{0})[/mm] entscheiden?



Hallo Valkyrion,

die Untersuchung mittels [mm] f_{xx} [/mm] allein genügt natürlich nicht.
Schau z.B. einmal []da nach !

LG , Al-Chw.

Bezug
                
Bezug
relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 02.09.2018
Autor: Valkyrion

Hallo, erst mal Danke für die Antwort.

Dass ich erst mal untersuchen muss ob überhaupt ein stationärer Punkt und dann ein relatives Extremum vorliegt ist klar; geht mir jetzt nur um die Entscheidung welches relative Extremum.
Ich beziehe mich jetzt mal auf Seite 1 unten (g''(0)=) und das Beispiel auf Seite 3:

Heißt dass dann, dass ich die Frage nach der Art des Extremas sowohl über die Vorzeichenbetrachtung von [mm] f_{xx} [/mm] als auch von [mm] f_{yy} [/mm] entscheiden kann?

Hintergrund ist, dass das Vorzeichen von [mm] g''(x_{0}) [/mm] vom ausgeklammerten Faktor entschieden wird (solange [mm] f_{xx}f_{yy} [/mm] - [mm] f^{2}_{xy}>0, [/mm] was ja aber Vorraussetzung für ein relatives Extremum ist); wenn man [mm] f_{xx} [/mm] ausklammert, ist das [mm] f_{xx}, [/mm] wenn man [mm] f_{yy} [/mm] ausklammert, dann ist das eben [mm] f_{yy}? [/mm]



Bezug
                        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 So 02.09.2018
Autor: Al-Chwarizmi

Hallo,

ich glaube, jetzt deine eigentliche Frage verstanden zu haben.
Du beziehst sich auf den Text:

Ist an einer Stelle $\ [mm] (x_0,y_0)$ [/mm]

$\ [mm] f_x(x_0,y_0)=0$ [/mm] und $\ [mm] f_y(x_0,y_0)=0$ [/mm]

und besteht außerdem die Ungleichung

$\ [mm] f_{xx} (x_0,y) f_{yy} [/mm] (x,y) - [mm] f_{xy}^2(x_0,y_0)>0$ [/mm]    (**)

so liegt an dieser Stelle ein Extremum vor, und zwar ein Maximum,
wenn $\ [mm] f_{xx}(x_0,y_0) [/mm] < 0$, und ein Minimum, wenn $\ [mm] f_{xx}(x_0,y_0) [/mm] > 0$ ist.


In diesem Text könnte man den letzten Teil auch durch folgenden
Halbsatz ersetzen:

  .... und zwar ein Maximum,
wenn $\ [mm] f_{yy}(x_0,y_0) [/mm] < 0$, und ein Minimum, wenn $\ [mm] f_{yy}(x_0,y_0) [/mm] > 0$ ist.


Grund:  wenn die Kriteriumsungleichung (**) erfüllt ist, so
sind [mm] f_{xx} [/mm] und  [mm] f_{yy} [/mm]  entweder beide positiv oder beide negativ.
Spielt dann also keine Rolle, ob man sich auf das Vorzeichen
von [mm] f_{xx} [/mm]  oder auf das von  [mm] f_{yy} [/mm]  bezieht.

LG ,  Al-Chw.




Bezug
                                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 So 02.09.2018
Autor: Valkyrion

Ok, danke,
ja das war die Frage.
Ich hatte nä,lich überall immer nur gefunden, dass man [mm] f_{xx} [/mm] überprüfen soll und mich dann gefragt, ob [mm] f_{yy} [/mm] bei dieser Detailfrage keine Rolle spielt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]