matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenrekursiv definierte Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - rekursiv definierte Folge
rekursiv definierte Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursiv definierte Folge: Idee
Status: (Frage) beantwortet Status 
Datum: 11:27 Di 13.02.2007
Autor: Trapt_ka

Aufgabe
[mm] a_{n}=(5+a_{n-1}+4)/(a_{n-1}+8) [/mm]

nun soll ich [mm] a_{n}-a_{n-1} [/mm] machen
und dabei komme ich leider nicht auf das [mm] a_{n-1} [/mm] wie es in meiner lösung steht.
dort steht nämlich

[mm] a_{n}-a_{n-1}=(5*a_{n-1}+4)/(a_{n-1}+8)-(a^2_{n-1}+8*a_{n-1})/(a_{n-1}+8) [/mm]

nun hoffe ich dass mir eienr zeigen kann wie ich auf das [mm] a_{n-1} [/mm] komme

        
Bezug
rekursiv definierte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Di 13.02.2007
Autor: schachuzipus


> [mm]a_{n}=(5+a_{n-1}+4)/(a_{n-1}+8)[/mm]
>  
> nun soll ich [mm]a_{n}-a_{n-1}[/mm] machen
>  und dabei komme ich leider nicht auf das [mm]a_{n-1}[/mm] wie es in
> meiner lösung steht.
>  dort steht nämlich
>
> [mm]a_{n}-a_{n-1}=(5*a_{n-1}+4)/(a_{n-1}+8)-(a^2_{n-1}+8*a_{n-1})/(a_{n-1}+8)[/mm]
>  nun hoffe ich dass mir eienr zeigen kann wie ich auf das
> [mm]a_{n-1}[/mm] komme


Jo hallo

also [mm] a_n-a_{n-1}=\bruch{5+a_{n-1}+4}{a_{n-1}+8}-a_{n-1}=\bruch{5+a_{n-1}+4}{a_{n-1}+8}-\bruch{a_{n-1}(a_{n-1}+8)}{a_{n-1}+8} [/mm] gleichnamig gemacht

[mm] =\bruch{5+a_{n-1}+4}{a_{n-1}+8}-\bruch{a_{n-1}^2+8a_{n-1}}{a_{n-1}+8} [/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]