reflexive, transitive Relation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:03 Sa 26.07.2014 | Autor: | LiliMa |
Aufgabe | Finden Sie eine Relation auf {1,2,3}, die reflexiv und transitiv ist. |
Hallo zusammen,
ich habe folgendes Problem: wenn ich eine Relation aufschreibe als R={(1,1), (2,2), (3,3),(1,2),(2,3),(1,3)}, dann ist diese ja wegen {(1,1), (2,2), (3,3)} reflexiv und wegen {(1,2),(2,3),(1,3)} transitiv.
Aber z.B. nach der Definition von Reflexivität ist eine Relation genau dann reflexiv wenn jedes Element in Relation zu sich selbst steht. Das ist aber doch gar nicht mehr gegeben wenn ich {(1,2),(2,3),(1,3)} mit in meine Relation aufnehme. Wie kann dann eine Relation gleichzeitig reflexiv und transitiv sein.
Es wäre echt super wenn mir das jemand erklären könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:08 Sa 26.07.2014 | Autor: | hippias |
$R$ ist reflexiv, wenn $1$ zu sich selber in Relation steht, also [mm] $(1,1)\in [/mm] R$ ist; ebenso fuer $2$ und $3$. Wenn darueber hinaus auch noch weitere Elemente in Relation stehen, widerspricht das nicht der Definition.
Daher Erfuellt Dein $R$ die Vorgaben. Es haette uebrigens auch [mm] $\{(1,1), (2,2), (3,3)\}$ [/mm] ausgereicht (?)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:14 Sa 26.07.2014 | Autor: | LiliMa |
Danke für deine Antwort. Nur um sicher zu gehen, dass ich das kapiert habe. Wenn eine Relation z.B. symmetrisch sein soll und ich folgende Relation aufschreibe
R={(1,2),(2,1),(2,3),(3,2),(1,4)} Dann ist die relation wegen {(1,2),(2,1),(2,3),(3,2)} symmetrisch und es macht nichts, dass noch das {1,4} mit drinsteht.
Ist das richtig?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:34 Sa 26.07.2014 | Autor: | leduart |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo
nein, denn zu (1,4) fehlt ja die sym Relation (4,1)
reflexiv bezieht sich nicht auf alle Elemente, sondern nur auf R(a,b) mit a=b
symmetrisch auf ALLE Elemente.
dagegen wäre R={(1,2),(2,1),(2,3),(3,2),(4,4) symmetrisch aber nicht reflexiv
Gruss
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:40 Sa 26.07.2014 | Autor: | LiliMa |
Super danke! Der Hinweis dass sich reflexiv nicht auf alle Elemente bezieht sondern nur auf die R(a,b) mit a=b hat mir sehr geholfen. Das gilt sonst nur noch für die Eigenschaft irreflexiv oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:50 Sa 26.07.2014 | Autor: | hippias |
Nur damit durch leduarts Mitteilung kein falscher Eindruck entsteht:
Fuer die Reflexivitaet muss [mm] $(a,a)\in [/mm] R$ fuer alle [mm] $a\in [/mm] R$ gelten (und, wie bereits gesagt, wenn noch mehr Sachen in Relation stehen, ist das kein Widerspruch dazu); dies ist also eine Bedingung an alle Elemente aus $R$.
Fuer die Symmetrie muss fuer alle [mm] $(a,b)\in [/mm] R$ auch [mm] $(b,a)\in [/mm] R$ gelten; es liegt also eine Bedingung an alle Paare, die in Relation stehen vor.
Ja, die Irreflexivitaet ist aehnlich zur Reflexivitaet insofern, dass fuer alle [mm] $a\in [/mm] R$ gilt, dass [mm] $(a,a)\not \in [/mm] R$, d.h. kein Element steht zu sich selbst in Relation.
Nur nebenbei: Ist $R$ eine Relation die nicht reflexiv ist, dann folgt daraus i.a. nicht, dass sie irreflexiv ist. Klar?
|
|
|
|