reelle und imaginäre Wurzeln < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:36 Di 11.11.2008 | Autor: | elba |
Aufgabe | Es sei [mm] \gamma [/mm] der Graph mit Ecken {1,2,...,n} und Kanten von i nach i+1. Bestimmen Sie explizit die rellen und imaginären Wurzeln. Zeigen Sie dazu, dass für jede Wurzel [mm] x=(x_1,...,x_n) [/mm] folgendes gilt:
a) [mm] x_i \in{-1,0,1}
[/mm]
b) Ist [mm] x_i [/mm] > 0 für ein i, dann gilt auch [mm] x_j \ge [/mm] 0 für alle j.
c) Gilt [mm] x_i \ge [/mm] 0 für alle i, dann existieren i [mm] \le [/mm] j mit [mm] x_k=1 [/mm] für alle [mm] i\le k\le [/mm] j und [mm] x_k=0 [/mm] andernfalls.
(Hinweis: Verwenden Sie, dass [mm] x_i^2+x_{i+1} [/mm] - [mm] 2x_i x_{i+1} \ge [/mm] 0 gilt.) |
Wenn ich jetzt die Gleichung [mm] x_i^2+x_{i+1} [/mm] - [mm] 2x_i x_{i+1} [/mm] nach 1 auflöse, erhalte ich, dass [mm] x_i [/mm] entweder 0,1 oder -1 sein muss. Damit hätte ich ja a) gezeigt. Und wie genau kann ich denn die Wurzeln bestimmen???#
habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:24 Do 13.11.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|