matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenrechts-/linkskrümmung f(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - rechts-/linkskrümmung f(x)
rechts-/linkskrümmung f(x) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechts-/linkskrümmung f(x): Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:54 Mo 19.01.2009
Autor: tedd

Aufgabe
Wo ist die Funktion links- bzw. rechtsgekrümmt?

[mm] f(x)=\arcsin\left(\bruch{1}{1+x^2}\right) [/mm]

Also ich will die Aufgabe im Rahmen einer Kurvendiskussion machen...

Das Problem ist, dass die Ableitungen sehr kompliziert werden solange ich mich verrechnet habe und wollte wissen ob es eine einfachere Methode gibt...
Die Funktion ist nicht Diff'bar für [mm] x_0=0... [/mm]

[mm] f'(x)=\bruch{1}{\sqrt{1+(\bruch{1}{1+x^2})^2}}*\bruch{-2x}{(1+x^2)^2} [/mm]

Nebenrechnung:

[mm] \left(\bruch{1}{\sqrt{1+(\bruch{1}{1+x^2})^2}}\right)' [/mm]

[mm] =-\bruch{1}{2}*\left(1+(\bruch{1}{1+x^2})^2\right)^{-\bruch{3}{2}}*2*\bruch{1}{1+x^2}*\bruch{-2x}{(1+x^2)^2} [/mm]

[mm] =\left(1+(\bruch{1}{1+x^2})^2\right)^{-\bruch{3}{2}}*\bruch{2*x}{(1+x^2)^3} [/mm]



[mm] \left(\bruch{-2*x}{(1+x^2)^2}\right)' [/mm]

[mm] =\bruch{-2*(1+x^2)^2+2*x*2*(1+x^2)*2x}{(1+x^2)^4} [/mm]

[mm] =\bruch{6*x^2-2}{(1+x^2)^3} [/mm]


Jetzt kommt die tolle lange 2te Ableitung:

[mm] f''(x)=\left(1+(\bruch{1}{1+x^2})^2\right)^{-\bruch{3}{2}}*\bruch{2*x}{(1+x^2)^3}*\bruch{-2x}{(1+x^2)^2}+\left(1+(\bruch{1}{1+x^2})^2\right)^{-\bruch{1}{2}}*\bruch{6*x^2-2}{(1+x^2)^3} [/mm]

[mm] =\left(1+(\bruch{1}{1+x^2})^2\right)^{-\bruch{1}{2}}*\bruch{1}{(1+x^2)^3}*\left[\bruch{-4*x^2}{(1+x^2)^2}*\left(1+(\bruch{1}{1+x^2})^2\right)^{-1}+6*x^2-2\right] [/mm]


Das ausgeklammerte müsste immer > 0 sein, wenn ich mich da nicht verguckt habe...

Kann man dem Begriff in der Klammer auch irgendiwe auf Anhieb ansehen, dass dieser [mm] \ge [/mm] 0 ist oder muss ich das wirklich noch ausrechnen?

Ich weis ich verlange hier sehr viel von euch wegen der langwierigen Ableitung, aber vielleicht hat ja trotzdem jemand Lust :-)

Danke und besten Gruß,
tedd

Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]