rang einer matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Man berechne den Rang der Matrix
[mm] \pmat{ 1 & 1 & 3 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0} [/mm]
für den Fall K = R und für den Fall K = F5 |
Hallo,
Ich habe für den Fall K=R die Matrix auf Zeilenstufenform gebracht und konnte den Rang 3 ablesen (Anzahl der Zeilen die nicht alle gleich 0 sind)
Mein Problem bei dem Fall K=F5
das bedeutet doch ich muss modulo 5 rechnen. also nur werte zwichen 0 und 4.
wenn ich das so mache und bringe die matrix erneut in zeilenstufenform bekomme ich
[mm] \pmat{ 1 & 1 & 3 & 2 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 2 & 3} [/mm] (erst III - I und dann II -I) als ergebnis und diese matrix hat meiner meinung nach wieder den rang 3. laut musterlösung muss aber der rang = 2 rauskommen.
wäre sehr nett wenn mir jemand helfen könnte.
vielen lieben dank schon mal im voraus.
|
|
|
|
> Man berechne den Rang der Matrix
> [mm]\pmat{ 1 & 1 & 3 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0}[/mm]
> für den Fall K = R und für den Fall K = F5
> Hallo,
> Ich habe für den Fall K=R die Matrix auf Zeilenstufenform
> gebracht und konnte den Rang 3 ablesen (Anzahl der Zeilen
> die nicht alle gleich 0 sind)
>
> Mein Problem bei dem Fall K=F5
> das bedeutet doch ich muss modulo 5 rechnen. also nur
> werte zwichen 0 und 4.
>
> wenn ich das so mache und bringe die matrix erneut in
> zeilenstufenform bekomme ich
> [mm]\pmat{ 1 & 1 & 3 & 2 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 2 & 3}[/mm]
Hallo,
dies ist ja keine Zeilenstufenform.
Ich kann hier den Rang nicht ablesen.
Du brauchst ja unter der 4 auch noch eine Null.
Nun bring das mal zu Ende, und dann wirst Du sehen, was passiert.
Gruß v. Angela
> (erst III - I und dann II -I) als ergebnis und diese matrix
> hat meiner meinung nach wieder den rang 3. laut
> musterlösung muss aber der rang = 2 rauskommen.
>
> wäre sehr nett wenn mir jemand helfen könnte.
>
> vielen lieben dank schon mal im voraus.
>
>
|
|
|
|
|
Hallo,
erstmal vielen dank für deine hilfe. mir ist jetzt klar, dass es keine zeilenstufenform ist. wenn ich aber versuche die 2 unter der 0 wegzukriegen bekomme ich folgende matrix:
[mm] \pmat{ 1 & 1 & 3 & 2 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 2,5 }
[/mm]
ich weiss nicht ob ich modulo 5 Dezimalzahlen bzw. Brüche haben darf ich denke aber ich darf nur 0,1,2,3,4 rausbekommen. stimmt das?
dann wäre dieser schritt nicht erlaubt und außerdem hätte ich dann immer noch rang 3.
kannst du mir bitte noch mal helfen, stehe glaube ich echt auf dem schlauch.
liebe grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:30 Fr 20.02.2009 | Autor: | leduart |
Hallo
Du [mm] Z_5 [/mm] wirklich nicht dividieren. Du musst ein geeignetes Vielfaches addieren, das 0 ergibt.
4=-1 wenn du also 2*die 2te Zeile zur dritten addierst erzeugst du ne 0 aus der 2 in der dritten Zeile und was gibt denn 2+8=?
dann kanst du sicher auch noch 2+3=?
(alles mod 5)
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:41 Fr 20.02.2009 | Autor: | mathenully |
Hallo,
vielen dank. tja ich war wahrscheinlich echt auf dem schlauch gestanden. ist jetzt alles klar.
liebe grüße
|
|
|
|