matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenquotientenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - quotientenkriterium
quotientenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quotientenkriterium: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:42 So 07.12.2008
Autor: Algebra_lover

Aufgabe
Untersuchen Sie die folgenden Reihen auf Konvergenz:
[mm] \summe_{n=1}^{\infty} \bruch{n^5}{2^n+3^n} [/mm]  

dies würde ich mit dem quotientenkriterium lösen. also [mm] \bruch{a_{n+1}}{a_{n}} [/mm] <1  würde sie konvergieren für > 1 divergieren... kann ich dort einfach n=1 und n=2 einsetzen und den quotienten errechnen und somit konvergenz bzw divergenz zeigen?

        
Bezug
quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 07.12.2008
Autor: pelzig

Nein, es müsste [mm] $\left|\frac{a_{n+1}}{a_n}\right|<1$ [/mm] sein für fast alle [mm] $n\in\IN$, [/mm] d.h. für alle bis auf höchstens endlich viele. Divergenz folgt auch nur, falls [mm] $\left|\frac{a_{n+1}}{a_n}\right|>1$ [/mm] für fast alle [mm] $n\in\IN$. [/mm] Die Beträge sind i.A. auch wichtig!

Gruß, Robert

Bezug
                
Bezug
quotientenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 So 07.12.2008
Autor: Algebra_lover

wenn ich das aber mit [mm] a_{n+1} [/mm] und [mm] a_{n} [/mm] rechne komme ich auf werte die sind jenseits von gut und böse.... das ist doch net der sinn oder mache ich da etwas falsch?... seh da keinen vereinfachungschritt

Bezug
                        
Bezug
quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 07.12.2008
Autor: pelzig

Wurzelkriterium?

Bezug
                                
Bezug
quotientenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 07.12.2008
Autor: Algebra_lover

beim wurzelkriterium weiß ich net so recht wie ich dass machen soll... ich habe doch im zähler und nenner unterschiedliche exponenten vorliegen und somit kann ich das doch nicht auf eine wurzel zurück führen oder soll ich das für zähler und nenner einzeln die wurzel ziehn und dann quotientenkriterium?

Bezug
                                        
Bezug
quotientenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 So 07.12.2008
Autor: Algebra_lover

wenn ich das durch rechne mit wurzelkriterium rechne kommt 1/2 bei mir raus, dass is kleiner 1 somit konvergiert die reihe?

Bezug
                                                
Bezug
quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 07.12.2008
Autor: schachuzipus

Hallo nochmal,

> wenn ich das durch rechne mit wurzelkriterium rechne [haee] kommt
> 1/2 bei mir raus,

ich komme zwar auf [mm] $\frac{1}{3}$, [/mm] aber das ist für die Folgerung egal

> dass ist kleiner 1 somit konvergiert die
> reihe?

Ja, das tut sie!

LG

schachuzipus


Bezug
                                        
Bezug
quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 So 07.12.2008
Autor: schachuzipus

Hallo Algebra_lover,

> beim wurzelkriterium weiß ich net so recht wie ich dass
> machen soll... ich habe doch im zähler und nenner
> unterschiedliche exponenten vorliegen und somit kann ich
> das doch nicht auf eine wurzel zurück führen oder soll ich
> das für zähler und nenner einzeln die wurzel ziehn und dann
> quotientenkriterium?

Hää?

Wieso klappt das mit dem QK denn nicht? Das geht doch wunderbar!

[mm] $\left|\frac{a_{n+1}}{a_n}\right|=\frac{(n+1)^5}{2^{n+1}+3^{n+1}}\cdot{}\frac{2^n+3^n}{n^5}=\left(\frac{n+1}{n}\right)^5\cdot{}\frac{3^n+2^n}{3\cdot{}3^n+2\cdot{}2^n}$ [/mm]

Hier geht der erste Faktor für [mm] $n\to\infty$ [/mm] gegen 1, im anderen klammere im Zähler und Nenner [mm] $3^n$ [/mm] aus, dann den Grenzübergang [mm] $n\to\infty$ [/mm]

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]