matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenpunktwieise Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - punktwieise Konvergenz
punktwieise Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

punktwieise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Fr 01.05.2015
Autor: zahlenfreund

Aufgabe
Untersuchen Sie auf punktweise und gleichmäßige Konvergenz:
a) [mm] f_{n}: \IR \to \IR, f_{n}=\wurzel[]{x^{2}+1/n} [/mm]
b) [mm] f_{n}: [/mm] [0,1] [mm] \to \IR, f_{n}(x)=n*x^{n}(1-x)^{n} [/mm]
c) [mm] f_{n}: \IR \to \IR, f_{n}(x)=x^{2n}/(1+x^{2n}) [/mm]

Moin,

Zunächst einmal die Definitionen  (D=Definitionsbereich)
punktweise Konv.:  [mm] \forall \varepsilon [/mm] >0 [mm] \forall [/mm] x [mm] \in [/mm] D [mm] \exists n_{0} [/mm] s.d. [mm] \forall n>n_{0} |f_{n}(x)-f(x)|<\varepsilon [/mm]

gleichmäßige Konv.: [mm] \forall \varepsilon [/mm] >0 [mm] \exists n_{0}\forall [/mm] x [mm] \in [/mm] D [mm] \forall n>n_{0} |f_{n}(x)-f(x)|<\varepsilon [/mm]

Damit ich eine Abschätzung [mm] |f_{n}(x)-f(x)| [/mm] machen kann muss ich wissen wie f(x) aussieht.
Wie bekomme ich f(x) ?

Lg zahlenfreund

        
Bezug
punktwieise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Fr 01.05.2015
Autor: fred97


> Untersuchen Sie auf punktweise und gleichmäßige
> Konvergenz:
>  a) [mm]f_{n}: \IR \to \IR, f_{n}=\wurzel[]{x^{2}+1/n}[/mm]
>  
> b) [mm]f_{n}:[/mm] [0,1] [mm]\to \IR, f_{n}(x)=n*x^{n}(1-x)^{n}[/mm]
>  c)
> [mm]f_{n}: \IR \to \IR, f_{n}(x)=x^{2n}/(1+x^{2n})[/mm]
>  
> Moin,
>  
> Zunächst einmal die Definitionen  (D=Definitionsbereich)
>  punktweise Konv.:  [mm]\forall \varepsilon[/mm] >0 [mm]\forall[/mm] x [mm]\in[/mm] D
> [mm]\exists n_{0}[/mm] s.d. [mm]\forall n>n_{0} |f_{n}(x)-f(x)|<\varepsilon[/mm]
>  
> gleichmäßige Konv.: [mm]\forall \varepsilon[/mm] >0 [mm]\exists n_{0}\forall[/mm]
> x [mm]\in[/mm] D [mm]\forall n>n_{0} |f_{n}(x)-f(x)|<\varepsilon[/mm]
>  
> Damit ich eine Abschätzung [mm]|f_{n}(x)-f(x)|[/mm] machen kann
> muss ich wissen wie f(x) aussieht.
> Wie bekomme ich f(x) ?
>  
> Lg zahlenfreund


Zu a)  für jedes x gilt [mm] x^2+1/n \to x^2 [/mm] (n [mm] \to \infty) [/mm]

Somit konv. [mm] (f_n) [/mm] auf [mm] \IR [/mm] punktweise gegen f(x)=|x|

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]