matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationproduktintegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - produktintegration
produktintegration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

produktintegration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 So 16.09.2007
Autor: odin666

Aufgabe
f(x,y) = cos (0,5 [mm] \pi [/mm] x²)

Hallo ich möchte gerne die Funktion:

[mm] \integral_{0}^{1}\integral_{0}^{x}{ cos (0,5 \pi x²) dy dx} [/mm]
integrieren. Ich habe es mit der Produktintegration versucht, aber dadurch,dass in dem argument ein x² steht, fällt immer wieder ein x in das integral und somit hab ioch ne endlosschleife, wenn ich das richtig sehe. kann mir da evtl. einer weiterhelfen???

        
Bezug
produktintegration: Konstante
Status: (Antwort) fertig Status 
Datum: 14:23 So 16.09.2007
Autor: Loddar

Hallo odin!


Das innere Integral, das zuerst gelöst werden muss, wird doch nach der Variablen [mm] $\red{y}$ [/mm] integriert. Da hier noch gar kein $y_$ auftritt, ist der Term [mm] $\cos\left(\bruch{\pi}{2}*x^2\right)$ [/mm] für $y_$ als konstant anzusehen ... sprich: ein sehr einfaches Integral.


Gruß
Loddar


Bezug
                
Bezug
produktintegration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 16.09.2007
Autor: odin666

ja das is klar aber danach, der bereich des integrals liegt ja zwischen 0 und x. daher integriere ich das y und setze dafür die obere grenze x ein. dann steht da

[mm] \integral_{0}^{1}{ cos (0,5 \pi x²) * x dx} [/mm]

und da komm ich dann nich weiter, bei der produkintegration komm ich dann auf:

u = x     v`= cos(0,5 [mm] \pi [/mm] x²)

u`= 1    v = [mm] \bruch{1}{\pi x} [/mm] sin (0,5 [mm] \pi [/mm] x²)

und wenn ich dann
u*v|  - [mm] \integral_ [/mm] { u`v}
einsetzen gelang ich in die "endlosschleife" außer ich hab was falsch gemacht.

Bezug
                        
Bezug
produktintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 So 16.09.2007
Autor: rainerS

Hallo!

> ja das is klar aber danach, der bereich des integrals liegt
> ja zwischen 0 und x. daher integriere ich das y und setze
> dafür die obere grenze x ein. dann steht da
>  
> [mm]\integral_{0}^{1}{ cos (0,5 \pi x²) * x dx}[/mm]
>  
> und da komm ich dann nich weiter,

Tipp: versuche eine Substitution [mm]z= \bruch{1}{2} \pi x^2[/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]