matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenpolynomdivision
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - polynomdivision
polynomdivision < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polynomdivision: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 27.05.2013
Autor: Jops

Aufgabe
Spalte Funktion in ganzrat. Hauptteil und gebrochenrat. Rest
[mm] \bruch{2x^4+6x^3+2x^2+5x}{4+4x} [/mm]

Nun mache ich es so
[mm] (2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x} [/mm]

bin mir unsicher ob es so stimmt?

        
Bezug
polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 27.05.2013
Autor: notinX

Hallo,

> Spalte Funktion in ganzrat. Hauptteil und gebrochenrat.
> Rest
>  [mm]\bruch{2x^4+6x^3+2x^2+5x}{4+4x}[/mm]
>  Nun mache ich es so
>  
> [mm](2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x}[/mm]
>  
> bin mir unsicher ob es so stimmt?

nein, stimmt nicht. Die ersten drei Summanden stimmen, danach nicht mehr.

Gruß,

notinX

Bezug
        
Bezug
polynomdivision: Test ist sehr einfach
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Mo 27.05.2013
Autor: Richie1401

Hallo,


> [mm](2x^4+6x^3+2x^2+5x):(4+4x)=0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x}[/mm]
>  
> bin mir unsicher ob es so stimmt?

Kann das denn überhaupt stimmen?
Wenn [mm] 0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x} [/mm] das Ergebnis ist, dann müsste gelten:
[mm] (0,5x^3+x^2-0,5x+3-\bruch{3}{4+4x})*(4+4x)=(2x^4+6x^3+2x^2+5x) [/mm]

Man sieht aber sehr sehr schnell, dass das nicht stimmen kann.

Also: Die Überprüfung kann man auch mal durch eine Multiplikation leicht verifizieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]