matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenpolstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - polstellen
polstellen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

polstellen: graph
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 25.01.2007
Autor: a-l18

hallo,
ich soll die funktion f(x) skizzieren.
f(x)= [mm] \bruch{x-1}{x^3-4x} [/mm]

ich habe die definitionslücke [mm] D=R\{2;-2;0} [/mm] und dir nullstelle bei 1 bestimmt
um die polstelle zu bestimmen muss ich die funktion vollständig kürzen. das geht bei dieser funktion nicht weiter, oder?
also habe ich die polstelle bei 0, das heißt bei null ist eine senkrechte asymptote.
wie kann ich jetzt aus diesen werten auf den graph schließen??
ich weiß dass ich einen negativen und einen positiven wert für x einsetzten kann, um zu prüfen, ob es eine polstelle mit vorzeichenwechel ist oder nicht. aber woher weiß ich wie der graph im ganzen ungefähr aussiehTTT

        
Bezug
polstellen: Tipp
Status: (Antwort) fertig Status 
Datum: 15:15 Do 25.01.2007
Autor: Elph

Ich glaube, du verwechselst hier die Begriffe Polstelle und Definitionslücke. Du Hast ja schon den Definitionsbereich bestimmt, daraus erhälst du die Polstellen bei 0, 2 und -2.
Zum Skizzieren musst du jetzt folgende Grenzwerte bestimmen:
1. [mm] \lim_{x \to \infty} [/mm]
2. [mm] \lim_{x \to -\infty} [/mm]
3. [mm] \lim_{x \to \-2-0} [/mm]
4. [mm] \lim_{x \to \-2+0} [/mm]
5. bis 8. entsprechend mit den anderen Polstellen

(hebbare) Definitionslücken bzw. "Löcher" gibt es übrigens bei dieser Funktion keine.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]