partielle / totale Diffbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:55 Fr 01.02.2008 | Autor: | Zerwas |
Aufgabe | Untersuchen Sie die Funktion
[mm] f:\IR^2\rightarrow\IR, (x,y)\rightarrow\begin{cases} \bruch{xy^2}{x^2+y^2}, & \mbox{für } (x,y) \not= (0,0) \\ 0, & \mbox{sonst } \end{cases}
[/mm]
auf Stetigkeit, partielle Differenzierbarkeit, totale Differenzierbarkeit und stetige partielle Differenzierbarkeit. |
Stetigkeit:
Da f gebrochen rational für alle [mm] (x,y)\not= [/mm] (0,0) bleibt nur noch die Stetigkeit in (0,0) zu zeigen:
Dazu setze ich 2 Nullfolgen ein:
Sei [mm] x,y=\frac{1}{n} \Rightarrow
[/mm]
[mm] f(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{\frac{1}{n^3}}{\frac{2}{n^2}} [/mm] = [mm] \frac{1}{2n} \rightarrow [/mm] 0 für [mm] n\rightarrow\infty
[/mm]
Analog kann ich das ganze auch mit [mm] -\frac{1}{n} [/mm] machen.
Jetzt habe ich mich aber gefragt ob ich nicht eigentlich auch noch alle anderen Fälle durchgehn müsste. Es ist ja bisher außen vorgelassen, dass x "von oben" und y "von unten" gegen 0 geht und umgekert. Im Endeffekt ist das bei dieser Aufgabe immer das gleiche was Rauskommt (nur mit evtl einem "-" davor) aber im Allgemeinen müsste man das doch auch überprüfen oder?
partielle Differenzierbarkeit:
[mm] \frac{\delta f}{\delta x} [/mm] = [mm] \frac{-x^2y^2+y^4}{(x^2+y^2)^2} [/mm] (n. Quotientenregel)
[mm] \frac{\delta f}{\delta y} [/mm] = [mm] \frac{2x^3y}{(x^2+y^2)^2} [/mm] (n. Quotientenregel)
Jetzt fehlt mir noch der Nullpunkt (0,0) dazu muss ich mit dem Differentienquotienten arbeiten:
[mm] \frac{\delta f}{\delta x} [/mm] = $ [mm] \lim_{h \to 0} \frac{f(x_0+h\cdot{}(1,0))-f(x_0)}{h}=\lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h}=\lim_{h \to 0}\frac{f(h,0)}{h} [/mm] $ = [mm] \lim_{h \to 0}\frac{\frac{h*0^2}{h^2+0^2}}{h}=0
[/mm]
[mm] \frac{\delta f}{\delta y} [/mm] = $ [mm] \lim_{h \to 0} \frac{f(x_0+h\cdot{}(0,1))-f(x_0)}{h}=\lim_{h \to 0} \frac{f(0,h)-f(0,0)}{h}=\lim_{h \to 0}\frac{f(0,h)}{h} [/mm] $ = [mm] \lim_{h \to 0}\frac{\frac{0*h^2}{0^2+h^2}}{h}=0
[/mm]
Damit ist f partiell Differenzierbar für alle (x,y) [mm] \in\IR^2
[/mm]
[u] totale Differenzierbarkeit: [mm] [\u]
[/mm]
Est ist also zu zeigen, dass die f in allen [mm] (x,y)\in\IR^2 [/mm] stetig partiell Differenzierbar ist. (Damit wäre dann auch die [u] stetige partielle Differenzierbarkeit [mm] [\u] [/mm] gezeigt.)
Dass [mm] \frac{\delta f}{\delta x} [/mm] und [mm] \frac{\delta f}{\delta y} [/mm] stetig sind für alle [mm] (x,y)\not= [/mm] (0,0) folgt aus der gebrochen rationalen Form.
D.h. es bleibt zu zeigen, dass f in (0,0) stetig partiell Diffbar ist:
Setze [mm] x,y=\frac{1}{n} \Rightarrow [/mm]
[mm] \frac{\delta f}{\delta x}(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{-\frac{1}{n}^2\frac{1}{n}^2+\frac{1}{n}^4}{(\frac{1}{n}^2+\frac{1}{n}^2)^2} [/mm] = 0
[mm] \frac{\delta f}{\delta y}(\frac{1}{n},\frac{1}{n}) [/mm] = [mm] \frac{2\frac{1}{n}^3\frac{1}{n}}{(\frac{1}{n}^2+\frac{1}{n}^2)^2} [/mm] = [mm] \frac{1}{2}\not= [/mm] 0
Damit ist f nicht stetig partiell Diffbar und damit auch nicht total Diffbar.
Passt das so? Oder habe ich Denk- bzw. Verständnissfehler drin?
Danke und Gruß
Zerwas
Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:24 So 03.02.2008 | Autor: | leduart |
Hallo
1. für Folgenstetigkeit braucht man : für JEDE Folge [mm] x_n,y_n [/mm] geht [mm] f(x_n,y_n) [/mm] gegen 0. das hilft für Unstetigkeit, wenn man nur eine Folge findet die nicht konv. aber nicht für Stetigkeit. setz x=rcost,y=rsint, und lass r gegen 0 gehen. dann hast dus direkt.
2. stetigkeit der part. Ableitung ist ein hinreichendes, keine notwendige Bedingung für die Existenz des totalen Differentials.
Gruss leduart
|
|
|
|