matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungpartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - partielle Integration
partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Frage/Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:51 Di 28.06.2005
Autor: Langer

Hallo!

Also habe folgende Frage aufgrund einer Mathe-Hausarbeit:

"Die Funktion [mm] f_t(x)= \bruch{t+ ln(x)}{x} [/mm]  die x-Achse und die zur y-Achse parallele gerade durch den Hochpunkt von [mm] f_t(x)umschließen [/mm] eine endliche Fläche.
Bestimmen Sie deren Inhalt und interpretieren sie Ihr Ergebnis."

Folgendes habe ich errechnet:

Wir müssen die Stammfunktion der Gleichung errechnen:
die grenzen liegen -->
untere Grenze: Nullstelle des Graphen bei x = [mm] e^t [/mm] (aus vorhergehender Aufgabe errechnet)
obere Grenze: Parallele Gerade zur y-Achse durch den Hochpunkt, also x=e^(1-t)

also bilden wir das Integral:

[mm] A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]

um davon die Stammfunktion zu bilden wenden wir die partielle Integration an, dann steht da:

[mm] A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]

= [(t+ln(x)) [mm] \* [/mm] ln(x) ] - [mm] \integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx} [/mm]


----> hier geht es nicht weiter da sich das hintere Integral nicht auiflösen lässt!
Ich denke hier muss eine Substitution angewendet werden,
habe jedoch keine Ahnung wie das hier geht!
Ich hoffe Ihr könnt mir helfen!

Ich habe diese Frage auch in keinem anderem Forum gestellt!

Vielen Dank schon im Vorraus!
Grüße Langer

        
Bezug
partielle Integration: Hilfe
Status: (Antwort) fertig Status 
Datum: 23:17 Di 28.06.2005
Autor: Zwerglein

Hi, Langer,

> "Die Funktion [mm]f_t(x)= \bruch{t+ ln(x)}{x}[/mm]  die x-Achse und
> die zur y-Achse parallele gerade durch den Hochpunkt von
> [mm]f_t(x)umschließen[/mm] eine endliche Fläche.
>  Bestimmen Sie deren Inhalt und interpretieren sie Ihr
> Ergebnis."
>  
> Folgendes habe ich errechnet:
>  
> Wir müssen die Stammfunktion der Gleichung errechnen:
>  die grenzen liegen -->
>  untere Grenze: Nullstelle des Graphen bei x = [mm]e^t[/mm] (aus
> vorhergehender Aufgabe errechnet)

Nanu? Da käme ich aber auf [mm] x=e^{-t}! [/mm]
Oder liegt irgendwo ein Tippfehler vor?

>  obere Grenze: Parallele Gerade zur y-Achse durch den
> Hochpunkt, also x=e^(1-t)

Das hab' ich jetzt nicht nachgerechnet!

>  
> also bilden wir das Integral:
>  
> [mm]A=\integral_{e^t}^{e^(1-t)} {\bruch{t+ ln(x)}{x} dx}[/mm]
>  

Also: Ich würde den Integranden zunächst mal in 2 Summanden zerlegen:
(Ich schreib's mal als unbestimmtes Integral: Die Grenzen kannst Du ja am Schluss selbst einsetzen)

[mm] \integral{(\bruch{t}{x}+ \bruch{ln(x))}{x} dx} [/mm]

= t*ln(x) + [mm] \integral{\bruch{ln(x)}{x} dx} [/mm] = (***)

Das übrigbleibende Integral löst Du durch Substitution:

z = ln(x) => [mm] \bruch{dz}{dx} [/mm] = [mm] \bruch{1}{x} [/mm]  => dz = [mm] \bruch{1}{x}*dx [/mm]

und daher:

(***) = t*ln(x) + [mm] \integral{z*dz} [/mm]

= t*ln(x) + [mm] \bruch{1}{2}z^{2} [/mm] +c  (das c brauchst Du später natürlich nicht mehr!)

= t*ln(x) + [mm] \bruch{1}{2}(ln(x)^{2} [/mm] +c.

So: Und nun die Grenzen einsetzen!
(Aber: Kontrollier' die Grenzen lieber noch mal!
Die Nullstelle war ja schon mal falsch!)


Bezug
                
Bezug
partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Di 28.06.2005
Autor: Langer

Jap!
Sorry war ein Tipfehler:

Die Nullstelle liegt bei x= e^(-t)

Gruß und vielen Dank Langer

Bezug
        
Bezug
partielle Integration: Maximum stimmt ...
Status: (Antwort) fertig Status 
Datum: 23:30 Di 28.06.2005
Autor: Loddar

Hallo Langer!


Dein Extremwert bei [mm] $x_E [/mm] \ = \ [mm] e^{1-t}$ [/mm] kann ich bestätigen [ok] !!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]