matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenpart. Ableitung, Frechet-Abl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - part. Ableitung, Frechet-Abl.
part. Ableitung, Frechet-Abl. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

part. Ableitung, Frechet-Abl.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:00 Di 14.05.2013
Autor: Palindrom

Hallo,

ich habe die Funktion

[mm] f(x,y)=\begin{cases} (x^{2}+y^{2}) sin \bruch{1}{\wurzel{x^{2}+y^{2}}} , & \mbox{für } (x,y) \not= (0,0) \mbox{ } \\ 0, & \mbox{für } (x,y) = (0,0) \mbox{ } \end{cases} [/mm]

vor mir liegen, und möchten zeigen, dass

1) f auf ganz [mm] \IR^{2} [/mm] partielle Ableitungen [mm] f_{x} [/mm] und [mm] f_{y} [/mm] besitzt,
2) f in (0,0) (Frechet-) diffbar. ist und
3) die partiellen Ableitungen [mm] f_{x} [/mm] und [mm] f_{y} [/mm] in (0,0) nicht stetig sind.

Meine Ansätze:

1) Wenn ich die partiellen Ableitungen bilde, erhalte ich:

[mm] \bruch{\partial}{\partial x} [/mm] f(x,y) = x (2 sin [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] cos [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}}) [/mm]

[mm] \bruch{\partial}{\partial y} [/mm] f(x,y) = y (2 sin [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] - [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] cos [mm] \bruch{1}{\wurzel{x^{2}+y^{2}}}) [/mm]

Wie kann ich das jetzt weiter zusammenfassen, damit ich sehe, dass diese Ableitung überall existieren ?

2. Da hab ich leider nur die Definition:

[mm] \limes_{||h||\rightarrow 0} \bruch{||f(x_{0} + h) - f(x_{0}) + Ah||}{||h||} [/mm]

Für meine Funktion würde folgen:

[mm] \limes_{h\rightarrow 0} \bruch{f(x_{0} + h) + Ah}{h} [/mm]

Nun weiß ich nicht recht, was ich für [mm] f(x_{0} [/mm] + h) einsetzen muss, um dann auf meine lineare Abbildung A zu kommen.

3.

[mm] \bruch{\partial f}{\partial x} [/mm] (0,0) = [mm] \limes_{h\rightarrow 0} [/mm] = [mm] \bruch{f(0,h) - f(0,0)}{h} [/mm] =  [mm] \limes_{h\rightarrow 0} \bruch{h^{2} sin \bruch{1}{h}}{h} [/mm] = 0

Also weiß ich, dass meine partiellen Ableitungen dort den Wert 0 annehmen, dann muss ich überprüfen, ob der Grenzwert der Funktionen, die ich unter 1) finden muss, gegen 0 strebt an der Stelle (0,0) ?


Danke & Gruß

        
Bezug
part. Ableitung, Frechet-Abl.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 16.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]