matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisparametrisierte Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - parametrisierte Ungleichung
parametrisierte Ungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parametrisierte Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:50 Mi 13.04.2005
Autor: Pollux

Hi,

es ist ein maximales t [mm] \in \IR [/mm] gesucht, so dass gilt:
  
[mm] \forall x\in \IR_+^{\*}: e^x \ge tx^n [/mm]

Momentan machen wir Taylor-Polynome und Maxima/Minima von Funktionen; wahrscheinlich kommt man mit der n-ten Ableitung bzw. der Maximumbestimmung zum Ziel,
leider hab ich keine Ahnung wie, da ja t maximiert werden soll, und schon bei der ersten Ableitung wegfällt...

Wie kann man das maximale t bestimmen?

mfg

        
Bezug
parametrisierte Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 13.04.2005
Autor: Max

Hallo Polux,

ich kann schon mal das $t$ abschätzen, aber ob es bereits der maximale Wert ist, bleibt die Frage:

[mm] $e^x=\sum_{k=0}^{\infty} \frac{x^k}{k!}\ge \frac{x^n}{n!}=tx^n$ [/mm] mit [mm] $t=\frac{1}{n!}$, [/mm] da $x>0$. Damit kann man $t$ schonmal mindestens so groß wählen.

Max

Bezug
                
Bezug
parametrisierte Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Mi 13.04.2005
Autor: Pollux

Hi,

das mit der Reihenentwicklung für die E-Funktion, war wohl schon ganz gut. Ich glaube aber, dass man hier ein Extremum bestimmen muss. Wie geht man hier aber vor?

Bezug
                        
Bezug
parametrisierte Ungleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 13.04.2005
Autor: Pollux

Kennt ihr eine Lösung, welche die n-te Ableitung verwendet. Ich habe nämlich sehr den Verdacht, dass es darauf hinausläuft...

Bezug
                                
Bezug
parametrisierte Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Do 14.04.2005
Autor: banachella

Hallo Pollux,

mit der n-ten Ableitung kann ich leider nicht dienen, aber immerhin mit einem Lösungsansatz:
Die Funktion [mm] $f_n(x)=e^x-t*x^n$ [/mm] soll nicht-negativ (auf [mm] $\IR^+$). [/mm] Das ist sie, wenn sie dort keine Nullstelle hat, da [mm] $f_n(0)=1$. [/mm]
[mm] $f_n$ [/mm] hat aber genau dann eine Nullstelle, wenn es ein [mm] $x_0>0$ [/mm] gibt, so dass [mm] $t=\bruch{e^{x_0}}{x^n_0}$. [/mm]
Man kann zeigen, dass die Funktion [mm] $g_n(x)=\bruch{e^{x}}{x^n}$ [/mm] ihr Minimum in [mm] $x_0=n$ [/mm] annimmt.
Also ist das kleinste $t$, für das [mm] $f_n$ [/mm] eine Nullstelle hat, [mm] $g_n(n)$. [/mm]
Wenn du jetzt noch zeigen kannst, dass [mm] $f_n$ [/mm] für [mm] $t=g_n(n)$ [/mm] keinen Nulldurchgang hat, also nirgends negativ wird, dann hast du dein gesuchtes $t$ gefunden. Denn für alle [mm] $t Und du solltest noch zeigen, dass für [mm] $t>g_n(n)$ $f_n(x)<0$ [/mm] für ein $x>0$.
Klappt's damit?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]