matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationparameterabhängige Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - parameterabhängige Integration
parameterabhängige Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parameterabhängige Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 06.11.2007
Autor: Ole-Wahn

Aufgabe
Eine Funktion $g$ sei für $ x [mm] \in \IR [/mm] $ durch
$g(x) := [mm] \int [/mm] ^{2+x4} _{-1 - [mm] x^2} e^{x^2 t^2}dt$ [/mm]
definiert. Bestimmen Sie (einen geschlossenen Ausdruck für )$ g'(x) $.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Theoretisch ist mir klar, wie ich zu einem Ausdruck komme.
Der Satz über parameterabhängige Integrale hilft:

Seien [mm] $\psi [/mm] (x)$ und [mm] $\phi [/mm] (x)$ differenzierbar, so ist

[mm] $g(x):=\int ^{\psi (x)} _{\phi (x)} [/mm] f(x,t)dt$ ebenfalls differenzierbar und es gilt:

$g'(x) = [mm] \int ^{\psi(x)} _{\phi (x)} [/mm] { [mm] \frac{\partial f} {\partial x} [/mm] (x,t) dt } + [mm] \psi [/mm] '(x) f [mm] \left ( x, \psi (x) \right [/mm] ) - [mm] \phi'(x) [/mm] f [mm] \left (x, \phi(x) \right [/mm] )$

Allerdings, wenn ich diesen Satz auf die vorliegende Funktion g anwende, komme ich durch den ersten Summanden zu Doppel- sogar  Dreifachintegralen, einer Funktion, die meines Wissens keine bekannte Stamfunktion hat, nämlich [mm] $e^{x^2}$. [/mm] Hat jemand eine Idee wie man einfacher zum Ziel kommt ?

Danke,
Ole

        
Bezug
parameterabhängige Integration: Hauptsatz der Integration
Status: (Antwort) fertig Status 
Datum: 19:47 Di 06.11.2007
Autor: Loddar

Hallo Ole!


Verwende hier den Hauptsatz der Integration mit: [mm] $\integral_a^b{f(x) \ dx} [/mm] \ = \ F(b)-F(a)$ .

Das bedeutet bei Deiner Aufgabe mit [mm] $f_x(t) [/mm] \ = \ [mm] e^{x^2*t^2}$ [/mm] :

$$g(x) \ = \ [mm] \integral^{2+x^4}_{-1 - x^2}{e^{x^2* t^2} \ dt} [/mm] \ = \ [mm] \integral^{2+x^4}_{-1 - x^2} {f_x(t) \ dt} [/mm] \ = \ [mm] \left[ \ F_x(t) \ \right]_{-1 - x^2}^{2+x^4} [/mm] \ = \ [mm] F_x(2+x^4)-F_x(-1-x^2)$$ [/mm]

Für die Ableitung $g'(x)_$ nun mittels MBKettenregel vorgehen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]