p-adische ganze Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:18 Mo 05.12.2011 | Autor: | valoo |
Aufgabe | Es sei p eine Primzahl.
1) Sei f ein ganzzahliges Polynom. Zeigen Sie, dass f genau dann eine Nullstelle in [mm] \IZ_{p} [/mm] hat, wenn die Kongruenz [mm] f(x)\equiv [/mm] 0 mod [mm] p^{n} [/mm] lösbar ist [mm] \forall n\in \IN
[/mm]
Bestimmen Sie für alle [mm] n\in \IN [/mm] die Anzahl Lösungen von [mm] x^{2}\equiv [/mm] 0 mod [mm] p^{n}
[/mm]
2) Zeigen Sie: Ist [mm] p\not=2 [/mm] und [mm] a\in \IZ [/mm] mit ggT(p,a)=1 so besitzt a eine Quadratwurzel in [mm] \IZ^{p} [/mm] genau dann, wenn a ein quadratischer Rest modulo p ist.
3) Zeigen Sie: Die Gruppe der (p-1)-ten Einheitswurzeln in [mm] \IZ_{p} [/mm] ist isomorph zur zyklischen Gruppe der Ordnung p-1. |
Hallo!
Also so ganz gut kann ich mit diesen p-adischen Zahlen noch nicht umgehen, es ist irgendwie sowas wie [mm] \IR, [/mm] aber irgendwie doch nicht...
Wie auch immer: Ist die Multiplikation dieser kohärenten Folgen auch punktweise definiert? Dann folgt das bei 1 doch einfach durch:
[mm] f((X_{n})_{n\in\IN})=(f(X_{n}))_{n\in\IN}=0
[/mm]
Aber die Sache mit den Anzahl Lösungen...ich hab mir mal ein paar Beispiele angeguckt und es sieht ganz danach aus, dass das immer [mm] (1,p,p,p^{2},p^{2},p^{3},p^{3},...) [/mm] sind...
Ich wüsste jetzt aber nicht, wie ich das beweisen sollte...
Zu 2): Wenn a quadratischer Rest modulo p ist, dann gilt [mm] x^{2}\equiv [/mm] a mod p für ein x. Dann ist doch (a,a,a,a,a,a,a,a,...)'s Wurzel (x,x,x,x,x,x,...) in [mm] \IZ_{p}, [/mm] oder? Und wie sieht das andersherum aus? Wenn man irgendso eine kohärente Folgen hat mit [mm] (x_{n})_{n\in\IN}^{2}=a, [/mm] dann ist doch insbesondere [mm] x_{1}^{2}\equiv [/mm] a mod p?
Zu 3): Mmmh, was ist da eigentlich genau zu zeigen? Dass einfach alle Einheitswurzeln drin liegen? Die kann man doch bestimmt alle angeben und einsehen, dass sie in [mm] \IZ_{p} [/mm] liegen... Ich frage mich nur, wie die Lösungen von [mm] X^{p-1}-1=0 [/mm] so aussehen mögen...Man kann ja nicht einfach annehmen, dass die so aussehen, wie die in [mm] \IC [/mm] aussehen oder? Wie sollte man zeigen, dass so nen Ding in Exponentialdarstellung da drin ist?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Do 08.12.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Fr 09.12.2011 | Autor: | felixf |
Moin!
> Es sei p eine Primzahl.
> 1) Sei f ein ganzzahliges Polynom. Zeigen Sie, dass f genau
> dann eine Nullstelle in [mm]\IZ_{p}[/mm] hat, wenn die Kongruenz
> [mm]f(x)\equiv[/mm] 0 mod [mm]p^{n}[/mm] lösbar ist [mm]\forall n\in \IN[/mm]
>
> Bestimmen Sie für alle [mm]n\in \IN[/mm] die Anzahl Lösungen von
> [mm]x^{2}\equiv[/mm] 0 mod [mm]p^{n}[/mm]
>
> 2) Zeigen Sie: Ist [mm]p\not=2[/mm] und [mm]a\in \IZ[/mm] mit ggT(p,a)=1 so
> besitzt a eine Quadratwurzel in [mm]\IZ^{p}[/mm] genau dann, wenn a
> ein quadratischer Rest modulo p ist.
>
> 3) Zeigen Sie: Die Gruppe der (p-1)-ten Einheitswurzeln in
> [mm]\IZ_{p}[/mm] ist isomorph zur zyklischen Gruppe der Ordnung
> p-1.
> Hallo!
>
> Also so ganz gut kann ich mit diesen p-adischen Zahlen noch
> nicht umgehen, es ist irgendwie sowas wie [mm]\IR,[/mm] aber
> irgendwie doch nicht...
> Wie auch immer: Ist die Multiplikation dieser kohärenten
> Folgen auch punktweise definiert? Dann folgt das bei 1 doch
Meinst du mit kohaerente Folge eine Folge [mm] $(a_1, a_2, \dots)$ [/mm] mit [mm] $a_i \in \IZ/p^i\IZ$ [/mm] und [mm] $a_{i+1} \equiv a_i \pmod{p^i}$? [/mm] Ja, da ist die Multiplikation komponentenweise definiert, ebenso wie die Addition.
> einfach durch:
> [mm]f((X_{n})_{n\in\IN})=(f(X_{n}))_{n\in\IN}=0[/mm]
Nein. Du musst ja noch eine kohaerente Folge finden! Du weisst ja nur, dass es irgendeine Loesung [mm] $a_i \in \IZ/p^i\IZ$ [/mm] gibt mit [mm] $f(a_i) [/mm] = 0 [mm] \pmod{p^i}$; [/mm] diese muessen nicht [mm] $a_{i+1} \equiv a_i \pmod{p^i}$ [/mm] erfuellen.
> Aber die Sache mit den Anzahl Lösungen...ich hab mir mal
> ein paar Beispiele angeguckt und es sieht ganz danach aus,
> dass das immer [mm](1,p,p,p^{2},p^{2},p^{3},p^{3},...)[/mm] sind...
Naja, [mm] $1^2 \not\equiv [/mm] 0 [mm] \pmod{p^i}$ [/mm] fuer alle $i [mm] \ge [/mm] 1$. Insofern: was soll diese Liste aussagen?
Du sollst alle $a [mm] \in \IZ$ [/mm] mit $0 [mm] \le [/mm] a < [mm] p^n$ [/mm] finden mit [mm] $a^2 \equiv [/mm] 0 [mm] \pmod{p^n}$, [/mm] also [mm] $p^n \mid a^2$. [/mm] Welche sind dies?
> Zu 2): Wenn a quadratischer Rest modulo p ist, dann gilt
> [mm]x^{2}\equiv[/mm] a mod p für ein x. Dann ist doch
> (a,a,a,a,a,a,a,a,...)'s Wurzel (x,x,x,x,x,x,...) in
> [mm]\IZ_{p},[/mm] oder?
Nein. Nur weil [mm] $x^2 \equiv [/mm] a [mm] \pmod{p}$ [/mm] gilt, gilt es noch lange nicht modulo [mm] $p^k$ [/mm] fuer jedes $k [mm] \ge [/mm] 1$. Das waer die Bedingung, dass $(a, a, a, [mm] \dots)$ [/mm] ein Quadrat von $(x, x, x, [mm] \dots)$ [/mm] ist.
Hier kannst du Hensels Lemma anwenden auf das Polynom $f = [mm] X^2 [/mm] - a$. (Spezialfall ist $a [mm] \equiv [/mm] 0 [mm] \pmod{p}$: [/mm] da stimmt die Aussage im Allgemeinen gar nicht!)
> Und wie sieht das andersherum aus? Wenn man
> irgendso eine kohärente Folgen hat mit
> [mm](x_{n})_{n\in\IN}^{2}=a,[/mm] dann ist doch insbesondere
> [mm]x_{1}^{2}\equiv[/mm] a mod p?
>
> Zu 3): Mmmh, was ist da eigentlich genau zu zeigen? Dass
> einfach alle Einheitswurzeln drin liegen? Die kann man doch
> bestimmt alle angeben und einsehen, dass sie in [mm]\IZ_{p}[/mm]
> liegen...
Fast
Der Punkt ist: in [mm] $\IZ/p\IZ$ [/mm] gibt es genau $p - 1$ $(p - 1)$-te Einheitswurzeln: das sind einfach alle Einheiten. Mit Hensel kannst du jedes Element aus [mm] $(\IZ/p\IZ)^\ast$ [/mm] zu einer $(p - 1)$-ten Einheitswurzel in [mm] $\IZ_p$ [/mm] liften: du musst dazu das Polynom $f = [mm] X^{p-1} [/mm] - 1$ verwenden und beachten, dass [mm] $f'(\zeta) \neq [/mm] 0$ ist (in [mm] $\IZ/p\IZ$) [/mm] fuer alle [mm] $\zeta \in (\IZ/p\IZ)^\ast$.
[/mm]
> Ich frage mich nur, wie die Lösungen von
> [mm]X^{p-1}-1=0[/mm] so aussehen mögen...Man kann ja nicht einfach
> annehmen, dass die so aussehen, wie die in [mm]\IC[/mm] aussehen
> oder? Wie sollte man zeigen, dass so nen Ding in
> Exponentialdarstellung da drin ist?
Nein, ganz so schoen sind die Dinger auch wieder nicht
LG Felix
|
|
|
|