p-Sylow-Untergruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei (G, *) eine endliche Gruppe.
Seien |G| ein Vielfaches von 5 und |G| [mm] \le [/mm] 30. Zeigen Sie, dass G genau eine 5-Sylow-Untergruppe hat. |
Ich habe hierbei sechs Fälle unterschieden.
1. Fall: |G| = 5, dann ist [mm] \pi [/mm] (G) = {5} und [mm] |Syl_{5} [/mm] (G)| = 1.
2. Fall: |G| = 10, ..., und wiederum [mm] |Syl_{5} [/mm] (G)| = 1.
3. Fall: |G| = 15, ..., und wiederum [mm] |Syl_{5} [/mm] (G)| = 1.
4. Fall: |G| = 20, ..., und wiederum [mm] |Syl_{5} [/mm] (G)| = 1.
5. Fall: |G| = 25, ..., und wiederum [mm] |Syl_{5} [/mm] (G)| = 1.
6. Fall: |G| = 30, ..., aber hier nun [mm] |Syl_{5} [/mm] (G)| = 1 oder = 6.
Beim 6. Fall will ich nun einen Widerspruchsbeweis durchführen. Da der Schnitt von sechs 5-Sylow-Untergruppen trivial ist, gibt es also 24 Elemente der Ordnung 5. Irgendwie muss ich ja nun zeigen, dass ich auf mehr als 30 Elemente komme, um so zu einem Widerspruch zu kommen. Da hänge ich leider.
Wenn mir jemand weiterhelfen könnte, wäre ich sehr dankbar :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:24 Mo 19.11.2012 | Autor: | teo |
Hallo,
also du kannst dir ja noch die Anzahl der möglichen 3-Sylow und 2-Sylowuntergruppen anschaun und dann entsprechend schließen. Allerdings bringe ich dabei raus, dass es durchaus funktioniert 6 5-Sylows eine 3-Sylow und 3 2-Sylows zu nehmen... Wäre also kein Widerspruch.. Stimmt die Aufgabenstellung? Ich bin mir nicht sicher, vlt. hab ich auch einen Denkfehler drin, aber bevor dir keiner antwortet ;)
Grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:35 Di 20.11.2012 | Autor: | hippias |
Der Widerspruch folgt dann so: Die normale $3$-Sylowgruppe erzeugt mit einer $5$-Sylowgruppe eine Gruppe der Ordnung $15$, in der die $5$-Sylowgruppe nach dem bisher gezeigten normal ist. Dadurch wird der Normalisator zu gross fuer [mm] $Syl_{5}(G)= [/mm] 6$.
|
|
|
|