matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenp-Normen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - p-Normen
p-Normen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 04.05.2013
Autor: SandySan

Aufgabe
Versuchen sie mittels p-norm

p-Norm:

[mm] \parallel x\parallel:=(\summe_{i=1}^{n}|x_i|^p)^{\bruch{1}{p}} [/mm]

durch probieren, Vektoren mit [mm] x\in \IR^3 [/mm] zu finden, für die der Quotient
[mm] ||x||_2/||x||_4 [/mm] möglichst groß bzw. klein wird.

Ich habe nun einige Vektoren eingesetzt, z.B.

[mm] (1,1,1)\in \IR^3 [/mm]

[mm] \bruch{||x||_2}{||x||_4}=\bruch{\wurzel{|1|^2+|1|^2+|1|^2}}{ \wurzel[4]{|1|^4+|1|^4+|1|^4}}=\bruch{\wurzel{3}}{\wurzel[4]{3}}=\wurzel{3}. [/mm]

Als nächstes habe ich [mm] (2,2,2)\in \IR^3 [/mm] eingesetzt.
Der Wert war aber bereits kleiner.

Das selbe mit (0,5, 0,5, [mm] 0,5)\in \IR^3 [/mm] und der Term wurde wieder größer.
Für (0,25, 0,25, [mm] 0,25)\in \IR^3 [/mm] habe ich das selbe ergebnis erhalten wie für (0,5, 0,5, [mm] 0,5)\in \IR^3. [/mm]

Durch probieren weiss ich doch nie, wofür der Quotient am größten wird.
Kann man das nicht auch anders lösen ?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
p-Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Sa 04.05.2013
Autor: angela.h.b.


> Versuchen sie mittels p-norm

>

> p-Norm:

>

> [mm]\parallel x\parallel:=(\summe_{i=1}^{n}|x_i|^p)^{\bruch{1}{p}}[/mm]

>

> durch probieren, Vektoren mit [mm]x\in \IR^3[/mm] zu finden, für
> die der Quotient
> [mm]||x||_2/||x||_4[/mm] möglichst groß bzw. klein wird.
> Ich habe nun einige Vektoren eingesetzt, z.B.

>

> [mm](1,1,1)\in \IR^3[/mm]

>

> [mm]\bruch{||x||_2}{||x||_4}=\bruch{\wurzel{|1|^2+|1|^2+|1|^2}}{ \wurzel[4]{|1|^4+|1|^4+|1|^4}}=\bruch{\wurzel{3}}{\wurzel[4]{3}}=\wurzel{3}.[/mm]

Hallo,

das Ergebnis stimmt doch nicht: man bekommt [mm] \wurzel[4]{3}. [/mm]

>

> Als nächstes habe ich [mm](2,2,2)\in \IR^3[/mm] eingesetzt.
> Der Wert war aber bereits kleiner.

Nämlich [mm] \wurzel[4]{3}. [/mm]

>

> Das selbe mit (0,5, 0,5, [mm]0,5)\in \IR^3[/mm] und der Term wurde
> wieder größer.

[mm] \wurzel[4]{3}. [/mm]

> Für (0,25, 0,25, [mm]0,25)\in \IR^3[/mm] habe ich das selbe
> ergebnis erhalten wie für (0,5, 0,5, [mm]0,5)\in \IR^3.[/mm]

[mm] \wurzel[4]{3}. [/mm]

>

> Durch probieren weiss ich doch nie, wofür der Quotient am
> größten wird.
> Kann man das nicht auch anders lösen ?

Naja, wenn Du das schon kannst, kannst (mit Grad und Pipapo) eine Extremwertberechnung machen, aber das sollst Du ja gar nicht.

LG Angela


>
>
>
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

Bezug
                
Bezug
p-Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 So 05.05.2013
Autor: SandySan


> > Versuchen sie mittels p-norm
>  >
>  > p-Norm:

>  >
>  > [mm]\parallel x\parallel:=(\summe_{i=1}^{n}|x_i|^p)^{\bruch{1}{p}}[/mm]

>  
> >
>  > durch probieren, Vektoren mit [mm]x\in \IR^3[/mm] zu finden,

> für
>  > die der Quotient

>  > [mm]||x||_2/||x||_4[/mm] möglichst groß bzw. klein wird.

>  > Ich habe nun einige Vektoren eingesetzt, z.B.

>  >
>  > [mm](1,1,1)\in \IR^3[/mm]

>  >
>  >

> [mm]\bruch{||x||_2}{||x||_4}=\bruch{\wurzel{|1|^2+|1|^2+|1|^2}}{ \wurzel[4]{|1|^4+|1|^4+|1|^4}}=\bruch{\wurzel{3}}{\wurzel[4]{3}}=\wurzel{3}.[/mm]
>  
> Hallo,
>  
> das Ergebnis stimmt doch nicht: man bekommt [mm]\wurzel[4]{3}.[/mm]
>  
> >
>  > Als nächstes habe ich [mm](2,2,2)\in \IR^3[/mm] eingesetzt.

>  > Der Wert war aber bereits kleiner.

>  
> Nämlich [mm]\wurzel[4]{3}.[/mm]
>  
> >
>  > Das selbe mit (0,5, 0,5, [mm]0,5)\in \IR^3[/mm] und der Term

> wurde
>  > wieder größer.

>  
> [mm]\wurzel[4]{3}.[/mm]
>  
> > Für (0,25, 0,25, [mm]0,25)\in \IR^3[/mm] habe ich das selbe
>  > ergebnis erhalten wie für (0,5, 0,5, [mm]0,5)\in \IR^3.[/mm]

>  
> [mm]\wurzel[4]{3}.[/mm]
>  
> >
>  > Durch probieren weiss ich doch nie, wofür der Quotient

> am
>  > größten wird.

>  > Kann man das nicht auch anders lösen ?

>  
> Naja, wenn Du das schon kannst, kannst (mit Grad und
> Pipapo) eine Extremwertberechnung machen, aber das sollst
> Du ja gar nicht.
>  
> LG Angela
>  
>
> >
>  >
>  >
>  >
>  > Ich habe diese Frage in keinem Forum auf anderen

>  > Internetseiten gestellt.

>  >


Ah okay ich habs, hab mich da irgendwie vertan :D

Aber eine frage hätte ich noch.

Vektoren z.B. (1,0,0) also wo [mm] x_1\not=x_2\not=x_3 [/mm] darf ich nicht nehmen oder  ?


Bezug
                        
Bezug
p-Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 So 05.05.2013
Autor: fred97


> > > Versuchen sie mittels p-norm
>  >  >
>  >  > p-Norm:

>  >  >
>  >  > [mm]\parallel x\parallel:=(\summe_{i=1}^{n}|x_i|^p)^{\bruch{1}{p}}[/mm]

>  
> >  

> > >
>  >  > durch probieren, Vektoren mit [mm]x\in \IR^3[/mm] zu finden,

> > für
>  >  > die der Quotient

>  >  > [mm]||x||_2/||x||_4[/mm] möglichst groß bzw. klein wird.

>  >  > Ich habe nun einige Vektoren eingesetzt, z.B.

>  >  >
>  >  > [mm](1,1,1)\in \IR^3[/mm]

>  >  >
>  >  >

> >
> [mm]\bruch{||x||_2}{||x||_4}=\bruch{\wurzel{|1|^2+|1|^2+|1|^2}}{ \wurzel[4]{|1|^4+|1|^4+|1|^4}}=\bruch{\wurzel{3}}{\wurzel[4]{3}}=\wurzel{3}.[/mm]
>  
> >  

> > Hallo,
>  >  
> > das Ergebnis stimmt doch nicht: man bekommt [mm]\wurzel[4]{3}.[/mm]
>  >  
> > >
>  >  > Als nächstes habe ich [mm](2,2,2)\in \IR^3[/mm] eingesetzt.

>  >  > Der Wert war aber bereits kleiner.

>  >  
> > Nämlich [mm]\wurzel[4]{3}.[/mm]
>  >  
> > >
>  >  > Das selbe mit (0,5, 0,5, [mm]0,5)\in \IR^3[/mm] und der Term

> > wurde
>  >  > wieder größer.

>  >  
> > [mm]\wurzel[4]{3}.[/mm]
>  >  
> > > Für (0,25, 0,25, [mm]0,25)\in \IR^3[/mm] habe ich das selbe
>  >  > ergebnis erhalten wie für (0,5, 0,5, [mm]0,5)\in \IR^3.[/mm]

>  
> >  

> > [mm]\wurzel[4]{3}.[/mm]
>  >  
> > >
>  >  > Durch probieren weiss ich doch nie, wofür der

> Quotient
> > am
>  >  > größten wird.

>  >  > Kann man das nicht auch anders lösen ?

>  >  
> > Naja, wenn Du das schon kannst, kannst (mit Grad und
> > Pipapo) eine Extremwertberechnung machen, aber das sollst
> > Du ja gar nicht.
>  >  
> > LG Angela
>  >  
> >
> > >
>  >  >
>  >  >
>  >  >
>  >  > Ich habe diese Frage in keinem Forum auf anderen

>  >  > Internetseiten gestellt.

>  >  >

>
>
> Ah okay ich habs, hab mich da irgendwie vertan :D
>  
> Aber eine frage hätte ich noch.
>
> Vektoren z.B. (1,0,0) also wo [mm]x_1\not=x_2\not=x_3[/mm] darf ich
> nicht nehmen oder  ?
>    


Natürlich darfst Du auch solche Vektoren nehmen.

Tipp: die Normen [mm] ||*||_2 [/mm] und [mm] ||*||_4 [/mm] sind äquivalent, d.h., es gibt a,b>0 mit

      [mm] a||x||_4 \le ||x||_2 \le b||x||_4 [/mm]   für alle x [mm] \in \R^3 [/mm]


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]