matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriep-Norm für 0 < p < 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - p-Norm für 0 < p < 1
p-Norm für 0 < p < 1 < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-Norm für 0 < p < 1: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:09 So 25.04.2010
Autor: Soinapret

Aufgabe
Gegeben ist ein reeller Vektorraum V.
Ist 0 < p < 1 und definiert man
[mm] ||v||_{p}:= (|x_{1}|^p [/mm] + ... + [mm] |x_{n}|^p)^{\bruch{1}{p}} [/mm]
für v = [mm] (x_{1}, [/mm] ..., [mm] x_{n}) \in \IR^{n}, [/mm] so ist [mm] ||.||_p [/mm] keine Norm auf [mm] \IR^{n}, [/mm] falls n [mm] \ge [/mm] 2.

Ich kann mir die Normen für [mm] p=1,2,\infty [/mm] vorstellen. Darüber hinaus auch wie sich die Räume für größer oder kleiner werdene p aussehen. Somit ist für p < 1 der Raum nicht mehr konvex. (Eventuell benötige ich das hier für die Aufgabe)

Um zu zeigen, das für 0 < p < 1 keine Norm vorliegt, muss ich an vier Normaxiomen argumentieren:
1) [mm] ||v||_{p} \ge [/mm] 0 [mm] \forall [/mm] v [mm] \in [/mm] dem entsprechenden metrischen Raum
2) [mm] ||v||_{p} [/mm] = 0 [mm] \gdw [/mm] v = 0
3) [mm] ||\lambda [/mm] * [mm] v||_{p} [/mm] = [mm] |\lambda| [/mm] * [mm] ||v||_{p} \qquad \forall \lambda \in \IR [/mm]
4) [mm] ||v+w||_{p} \le ||v||_{p} [/mm] + [mm] ||w||_{p} \qquad \forall [/mm] v,w [mm] \in [/mm] V.

Da ich die ersten drei Normaxiome nachweisen konnte, muss im vierten wohl der Widerspruch liegen.

Leider komme ich nicht weit:
Sei w = [mm] (w_{1}, [/mm] ..., [mm] w_{n}) [/mm]
[mm] ||v||_{p} [/mm] = [mm] (\summe_{i=1}^{n} |x_{i}|^p)^{\bruch{1}{p}} [/mm]
[mm] ||w||_{p} [/mm] = [mm] (\summe_{i=1}^{n} |w_{i}|^p)^{\bruch{1}{p}} [/mm]
[mm] ||v+w||_{p} [/mm] = [mm] (\summe_{i=1}^{n} |(x_{i} [/mm] + [mm] w_{i})|^p)^{\bruch{1}{p}} [/mm]

Zu zeigen gilt, das diese Ungleichung nicht gilt:
[mm] ||v+w||_{p} \le ||v||_{p} [/mm] + [mm] ||w||_{p} [/mm]
Wenn ich mir testweise konkrete v, w und p vorgebe, dann scheint es zu klappen.
Irgendwie muss ich mir ja zu nutze machen, das 0 < p < 1 gilt. Hat jemand eine Idee?


        
Bezug
p-Norm für 0 < p < 1: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Mo 26.04.2010
Autor: fred97

Tipp: zeige , dass $ [mm] ||\lambda [/mm] $ * $ [mm] v||_{p} [/mm] $ = $ [mm] |\lambda| [/mm] $ * $ [mm] ||v||_{p} [/mm] $ nicht gilt !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]