orthogonale Projektion < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:09 So 05.11.2006 | Autor: | blinktea |
Aufgabe | Für U:=<(1,0,1,1),(1,1,0,1),(1,0,0,1)> [mm] \subset \IR^4 [/mm] bestimme die orthogonale Projektion von (2,1,2,3) auf U, wenn der [mm] \IR^4 [/mm] das kanonische Skalarpodukt besitzt |
also die orthonormalbasis hab ich mit gram-schmidt hergeleitet : [mm] w_1=(1,0,1,1) w_2=(0,1,0,0) [/mm] und [mm] w_3=(0,0,0,0), [/mm] ist die so richtig? nur weiß ich nich wie das mit der orthogonalen projektion funktioniert!!!
hab nun noch was zur orhtogonalen projektion gefunden und die durch geführt und komme wieder auf (2,1,2,3), nur habe ich das nun mit den vektoren der orthonormalbasis gemacht. aber, ob das so richtig ist, ist mir nicht klar!
|
|
|
|
Du kannst das so machen wie in der Schule. Erinnerst du dich? Da soll man von einem Punkt des dreidimensionalen Raumes aus ein Lot auf eine Ebene fällen und den Lotfußpunkt ermitteln. Wie macht man das? Man bestimmt den Schnittpunkt zwischen der Ebene und der Geraden, die senkrecht auf ihr steht und durch den vorgegebenen Punkt geht.
Und hier ist es das Gleiche, eine Dimension höher: Von einem Punkt des vierdimensionalen Raumes aus soll das Lot auf einen dreidimensionalen Unterraum, eine sogenannte Hyperebene, gefällt und der Lotfußpunkt ermittelt werden.
1. Schritt
Gib für [mm]U[/mm] die Normalform
[mm]U: \ \ \vec{n} \cdot \vec{x} = 0[/mm]
an. Der Normalenvektor [mm]\vec{n}[/mm] muß auf jedem der [mm]U[/mm] erzeugenden Vektoren senkrecht stehen. Das gibt dir ein homogenes lineares Gleichungssystem vom Typ 3×4, das du nichttrivial lösen mußt, wenn du nicht gleich durch genaues Hinschauen eine Lösung für [mm]\vec{n}[/mm] errätst.
2. Schritt
Die zu [mm]U[/mm] senkrechte Gerade [mm]g[/mm] durch [mm]\vec{p} = \begin{pmatrix} 2 & 1 & 2 & 3 \end{pmatrix}[/mm] ist
[mm]g: \ \ \vec{x} = \vec{p} + \lambda \, \vec{n}[/mm]
3. Schritt
Durch Einsetzen von [mm]\vec{x}[/mm] aus der Geradengleichung in die Hyperebenengleichung kannst du den Parameter [mm]\lambda[/mm] ermitteln, der mittels [mm]g[/mm] schließlich zum Schnittpunkt führt.
Ich habe [mm]\vec{p} \, ' = \begin{pmatrix} \frac{5}{2} & 1 & 2 & \frac{5}{2} \end{pmatrix}[/mm] für die Projektion erhalten.
|
|
|
|