matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraorthogonale Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - orthogonale Matrix
orthogonale Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale Matrix: Definition?
Status: (Frage) beantwortet Status 
Datum: 12:52 Fr 19.11.2004
Autor: Bastiane

Hallo!

Mir ist aufgefallen, dass ich gar nicht weiß, was eine orthogonale Matrix ist. In einer Übersicht über spezielle Matrizen finde ich:
Die Matrix A ist orthogonal, falls [mm] AA^T=I. [/mm]
Kann man sich das noch irgendwie vorstellen? Hat das eine tiefere Bedeutung?

Es braucht keine lange Erklärung zu sein, falls eine kurze knappe mir nicht reichen sollte, würde ich weiter nachfragen.

Viele Grüße
Bastiane
[cap]


        
Bezug
orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Fr 19.11.2004
Autor: Marcel

Hallo Bastiane,

> Hallo!
>  
> Mir ist aufgefallen, dass ich gar nicht weiß, was eine
> orthogonale Matrix ist. In einer Übersicht über spezielle
> Matrizen finde ich:
>  Die Matrix A ist orthogonal, falls [mm]AA^T=I. [/mm]

Da steht doch, was eine orthogonale Matrix ist. ;-)

>  Kann man sich das noch irgendwie vorstellen? Hat das eine
> tiefere Bedeutung?

Ja, da gibt es schon tiefere (geometrische) Bedeutungen. Allerdings fällt mir momentan nicht wirklich etwas dazu ein, was dir anschaulich helfen könnte.
Etwas formales:
Ist $A$ eine orthogonale [mm] $n\times [/mm] n$-Matrix und sind [mm] $A_i$ [/mm] die Zeilen von $A$, so heißt die Bedingung [mm] $A*A^T=I$ [/mm] ja nichts anderes als:
[m]A*A^T=\vektor{A_1\\A_2\\.\\.\\.\\A_n}*\left(A_1^T,A_2^T,...,A_n^T\right)=\begin{pmatrix}1&0&0&0&&... &0 \\0&1&0&0& &... &0\\...& & .& & &...&.\\...& & &.& &...&.\\. & & & &.& &. \\. & & & & &. &. \\0&0&0&0& &...&1 \end{pmatrix}[/m]

Wenn du also beispielsweise den [mm] $\IR^n$ [/mm] mit dem kanonischen Skalarprodukt betrachtest, so gilt:
[mm] $A_i *A_j^T=0$, [/mm] falls $i [mm] \not=j$ [/mm] (d.h. [mm] $A_i$ [/mm] und [mm] $A_j$ [/mm] sind orthogonal für [m]i \not=j[/m])
und
[mm] $A_i *A_i^T=1$. [/mm] (D.h., die euklidische Norm von [mm] $A_i$ [/mm] ist $1$ (weil das Quadrat der euklidischen Norm $1$ ist!).)

Man kann beweisen:
Mit einer orthogonalen Matrix $A [mm] \in \IR^{n \times n}$ [/mm] hast du durch die Zeilenvektoren (Spaltenvektoren) eine Orthonormalbasis des [mm] $\IR^n$ [/mm] gegeben (d.h., dass die Zeilenvektoren (Spaltenvektoren) von $A$ linear unabhängig sind, die Norm $1$ haben und dass je zwei voneinander verschiedene Zeilenvektoren (Spaltenvektoren) senkrecht aufeinander stehen. Die lineare Unabhängigkeit habe ich nicht nachgerechnet, aber das folgt etwa daraus, dass orthogonale $n [mm] \times [/mm] n$-Matrizen invertierbar sind (siehe unten) und daher $Rang(A)=n$ gilt. Der Beweis steht also schon hier! :-))

Wichtig ist auch folgender Sachverhalt:
Nach Definition gilt [mm] $A*A^T=I$, [/mm] und deswegen gilt nach dem Determinantenmultiplikationssatz:
[mm] $det(A*A^T)=det(I)$ [/mm]
[mm] $\gdw$ [/mm] (beachte: [mm] $det(A)=det(A^T)$) [/mm]
[mm] $\left(det(A)\right)^2=1$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $det(A)=\pm [/mm] 1$.

D.h., die Determinante einer orthogonalen $n [mm] \times [/mm] n$-Matrix hat nur zwei mögliche Werte: $1$ oder $-1$.

Und was sich sofort aus der Definition ergibt (damit hätte ich vielleicht anfangen sollen):
Die Menge der orthogonalen Matrizen ist (bzgl. der Matrixmultipl.) eine Gruppe, und für jede orthogonale Matrix $A$ ist die Inverse damit eindeutig bestimmt und es gilt:
[mm] $A^{-1}=A^T$ [/mm]
  
So, die geometrischen Eigenschaften überlasse ich jemanden, der mehr davon versteht als ich. ;-)

Viele Grüße,
Marcel  

Bezug
                
Bezug
orthogonale Matrix: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Sa 20.11.2004
Autor: Bastiane

Hey, danke! Das hat mir schon geholfen!

> Ja, da gibt es schon tiefere (geometrische) Bedeutungen.
> Allerdings fällt mir momentan nicht wirklich etwas dazu
> ein, was dir anschaulich helfen könnte.

Hatte ich gesagt, ich bräuchte eine geometrische Bedeutung?

>  Etwas formales:
>  Ist [mm]A[/mm] eine orthogonale [mm]n\times n[/mm]-Matrix und sind [mm]A_i[/mm] die
> Zeilen von [mm]A[/mm], so heißt die Bedingung [mm]A*A^T=I[/mm] ja nichts
> anderes als:
>  
> [m]A*A^T=\vektor{A_1\\A_2\\.\\.\\.\\A_n}*\left(A_1^T,A_2^T,...,A_n^T\right)=\begin{pmatrix}1&0&0&0&&... &0 \\0&1&0&0& &... &0\\...& & .& & &...&.\\...& & &.& &...&.\\. & & & &.& &. \\. & & & & &. &. \\0&0&0&0& &...&1 \end{pmatrix}[/m]
>  
>
> Wenn du also beispielsweise den [mm]\IR^n[/mm] mit dem kanonischen
> Skalarprodukt betrachtest, so gilt:
>  [mm]A_i *A_j^T=0[/mm], falls [mm]i \not=j[/mm] (d.h. [mm]A_i[/mm] und [mm]A_j[/mm] sind
> orthogonal für [m]i \not=j[/m])

Ja, das war eigentlich das Interessanteste. So kann ich mir das vorstellen. Dass Vektoren zueinander orthogonal sein können, weiß ich ja, und das kann ich mir auch vorstellen. Aber Matrizen? Aber wenn man sich die Matrizen ja einfach aus Vektoren zusammengesetzt vorstellt, dann geht das ja auch... :-)

>  und
>  [mm]A_i *A_i^T=1[/mm]. (D.h., die euklidische Norm von [mm]A_i[/mm] ist [mm]1[/mm]
> (weil das Quadrat der euklidischen Norm [mm]1[/mm] ist!).)

Ja, das ist auch interessant!

> D.h., die Determinante einer orthogonalen [mm]n \times n[/mm]-Matrix
> hat nur zwei mögliche Werte: [mm]1[/mm] oder [mm]-1[/mm].

Ja, und das ist ja ganz toll! (Ich fürchte, das haben wir auch mal gelernt und ich hätte es eigentlich längst wissen müssen...)
  

> Und was sich sofort aus der Definition ergibt (damit hätte
> ich vielleicht anfangen sollen):
>  Die Menge der orthogonalen Matrizen ist (bzgl. der
> Matrixmultipl.) eine Gruppe, und für jede orthogonale
> Matrix [mm]A[/mm] ist die Inverse damit eindeutig bestimmt und es
> gilt:
>  [mm]A^{-1}=A^T[/mm]

Ja, das ist auch interessant!

Hab' mir die ganze Sache mal ausgedruckt, damit ich's immer wieder nachschlagen kann, wenn ich's mal vergesse! ;-)

Viele Grüße
Bastiane
[banane]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]