numerische Integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
|
Liebe Mitglieder!
Die Simpson'sche Formel zu [mm]2N+1[/mm] Stützstellen bei [mm]N[/mm] Intervallen sieht ja so aus:
[mm]\int\limits_{x_1}^{x_{2N+1}}{f(x)\mathrm{d}x} \approx \frac{h}{3}\sum\limits_{i=1}^{2N-1}{\left(f\left(x_i\right) + f\left(x_{i+2}\right) + 4f\left(x_{i+1}\right)\right)}[/mm] mit [mm]h := \frac{x_{2N+1}-x_1}{2N}[/mm], richtig, oder?
In den Numerik-Büchern, die ich mir bisher durchgelesen habe, steht nämlich folgende Darstellung:
[mm]\frac{h}{3}\left(f\left(x_1\right) + f\left(x_{2N+1}\right) + 2\sum\limits_{i=2}^N{f\left(x_{2i-2}\right)} + 4\sum\limits_{i=1}^N{f\left(x_{2i-1}\right)}\right)[/mm]
Meine Frage wäre nun, ob diese Darstellungen richtig sind, denn ich bin mir bei den Indizes und beim [mm]h[/mm] nicht sicher; Und durch welche Umformungsschritte ich von der ersten Summendarstellung zur Zweiten gelange?
Als ich es versucht habe, wußte ich nicht wie ich die Summe in gerade und ungerade Summanden aufspalten sollte.
Vielen Dank!
Grüße
Karl
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:36 Mo 02.01.2006 | Autor: | moudi |
> Liebe Mitglieder!
Hallo Karl
>
>
> Die Simpson'sche Formel zu [mm]2N+1[/mm] Stützstellen bei [mm]N[/mm]
> Intervallen sieht ja so aus:
>
>
> [mm]\int\limits_{x_1}^{x_{2N+1}}{f(x)\mathrm{d}x} \approx \frac{h}{3}\sum\limits_{i=1}^{2N-1}{\left(f\left(x_i\right) + f\left(x_{i+2}\right) + 4f\left(x_{i+1}\right)\right)}[/mm]
Deine Formel stimmt so nicht, du musst nur über ungeraden i summieren, denn [mm] $\frac h3(f(x_i)+4f(x_{i+1})+f(x_{i+2}))$ [/mm] ist etwa die Fläche im Intervall [mm] $[x_i,x_{i+2}]$ [/mm] i.e.
[mm] $\int_{x_i}^{x_{i+2}}f(x)dx\approx\frac h3(f(x_i)+4f(x_{i+1})+f(x_{i+2}))$
[/mm]
So ist klar wie die untere Formel zustande kommt. Bei geradem Index $i$ muss der Funktionswert 4 mal genommen werden, bei ungeradem Index $i$ muss der Funktionswert 2 mal genommen werden, ausser bei den äussertsten Stützstellen [mm] $x_1$ [/mm] und [mm] $x_{2N+1}$, [/mm] wo der Funktionswert nur einmal genommen werden muss.
> mit [mm]h := \frac{x_{2N+1}-x_1}{2N}[/mm], richtig, oder?
>
>
> In den Numerik-Büchern, die ich mir bisher durchgelesen
> habe, steht nämlich folgende Darstellung:
>
>
> [mm]\frac{h}{3}\left(f\left(x_1\right) + f\left(x_{2N+1}\right) + 2\sum\limits_{i=2}^N{f\left(x_{2i-2}\right)} + 4\sum\limits_{i=1}^N{f\left(x_{2i-1}\right)}\right)[/mm]
>
>
> Meine Frage wäre nun, ob diese Darstellungen richtig sind,
> denn ich bin mir bei den Indizes und beim [mm]h[/mm] nicht sicher;
> Und durch welche Umformungsschritte ich von der ersten
> Summendarstellung zur Zweiten gelange?
> Als ich es versucht habe, wußte ich nicht wie ich die
> Summe in gerade und ungerade Summanden aufspalten sollte.
>
>
> Vielen Dank!
>
>
>
> Grüße
> Karl
mfG Moudi
|
|
|
|