matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale Funktionennullstellenbestimmung parabeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - nullstellenbestimmung parabeln
nullstellenbestimmung parabeln < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellenbestimmung parabeln: korrektur
Status: (Frage) beantwortet Status 
Datum: 16:45 Mo 15.10.2007
Autor: sarah1990

Aufgabe
zeige, dass f eine quadratische funktion ist. an welchen stellen tritt ein vorzeichenwechsel der funktionswerte auf?untersuche dazu das verhalten der funktionswerte in der umgebung der nullstellen.

[mm] f(x)=x^3-3+0,5x^2-x^3+0,5x [/mm]

Hey leute!
das ist bestimmt voll einfach aber ich finde meinen fehler leider trotzdem nicht!
wäre toll wenn ihr mir helfen könntet!
das ergebnis ist folgendes:
[mm] f(x)=0,5x^2+0,5x-3 [/mm]
nullstellen:-3 und 2
vorzeichenwechsel bei -3 und 0,5

meine lösung:
[mm] 0,5x^2+0,5x-3 [/mm]
soweit ja richtig!
dann habe ich die p-q-formel angewendet:
p=0,5 und q=-3
x1/2= [mm] 0,25\pm(0,25^2+3)^1/2 [/mm]
[mm] x1/2=0,25\pm1,75 [/mm]

bitte helft mir!

        
Bezug
nullstellenbestimmung parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 15.10.2007
Autor: angela.h.b.


> zeige, dass f eine quadratische funktion ist. an welchen
> stellen tritt ein vorzeichenwechsel der funktionswerte
> auf?untersuche dazu das verhalten der funktionswerte in der
> umgebung der nullstellen.

> meine lösung:
>  [mm]0,5x^2+0,5x-3[/mm]
>  soweit ja richtig!
>  dann habe ich die p-q-formel angewendet:
>  p=0,5 und q=-3

Hallo,

Du kommst mit Deiner pq-Formel etwas schnell.

Du willst ja die Gleichung [mm] 0=0,5x^2+0,5x-3 [/mm] lösen.

Willst Du das mit der pq-Formel tun, so mußt Du erstmal dafür sogen, daß die 0.5 vorm [mm] x^2 [/mm] verschwindet.
Die pq-Formel funktioniert nur für [mm] x^2+px+q=0! [/mm]

Multipliziere also die komplette Gleichung mit 2, und komm dann erst mit Deiner Formel.

Gruß v. Angela

P.S:

> nullstellen:-3 und 2
> vorzeichenwechsel bei -3 und 0,5

Da paßt ja auch irgendwas nicht zusammen in Deiner Musterlösung...


Bezug
        
Bezug
nullstellenbestimmung parabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 15.10.2007
Autor: nostradamus

Entschuldige, ich bin mir nicht sicher, aber ich glaube, dass du
[mm] f(x)=0,5x^2+0,5x-3 [/mm] erst mit 2 multiplizieren musst um ein einfaches [mm] x^2 [/mm] zu erhalten.
Das hätte zur Folge, dass p und q folgende Werte bekommen:  p=1  |  q=-6
[mm] x_{1|2}=-\bruch{1}{2}\pm\wurzel{\begin{pmatrix}\bruch{1}{2}\end{pmatrix}^2+6} [/mm]

Wenn man nun rechnet kommen folgendes heraus:

[mm] x_1=-\bruch{1}{2}+\wurzel{\begin{pmatrix}\bruch{1}{2}\end{pmatrix}^2+6}=2 [/mm]
[mm] x_1=-\bruch{1}{2}-\wurzel{\begin{pmatrix}\bruch{1}{2}\end{pmatrix}^2+6}=-3[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]