matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - nullstellen
nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 21.02.2006
Autor: engel

wie kann ich eine gleichung der allg. form in die nullstellenform bringen? Bei mir im Buch steht da "a übernehmen, Nullstellen berechnen" und das hilft mir nicht so wirklich weiter...

        
Bezug
nullstellen: Nachfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Di 21.02.2006
Autor: Seppel

Hi!

Was für eine Funktion meinst du? Eine lineare Funktion, eine quadratische oder die allgemeine Schreibweise einer ganzrationalen Funktion? Wäre nett, wenn du das angeben würdest.

Liebe Grüße
Seppel

Bezug
                
Bezug
nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Di 21.02.2006
Autor: engel

als allgemeine form meine ich:

y= ax² + bx + c

Bezug
        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 21.02.2006
Autor: sandmann0187

hey,

kurze frage, willst du aus der gleichgung 0= ax² + bx + c folgende machen: x² +px+q=0 ???

also wenn du die formel y= ax² + bx + c hast, kannst du gleich eine lösungsformel anwenden, die in jedem tafelwerk steht.

die lautet     [mm] x_{1/2}=\bruch{-b \pm \wurzel{b²-4ac}}{2a} [/mm]

möchtest du aber das ganze auf die form x² +px+q=0 bringen, rechnest du einfach jeden summanden durch a, dann hast du also   [mm] \bruch{a}{a}x²+\bruch{b}{a}x+\bruch{c}{a}=\bruch{0}{a}=0 [/mm]

sag mal, was du nun genau machen willst. gib uns mal ein beispiel

gruß andreas

Bezug
                
Bezug
nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 21.02.2006
Autor: engel

ich möchte aus:

y = ax² + bx + c

y = a(x-x1) (x-x2)

machen

Bezug
                        
Bezug
nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 21.02.2006
Autor: Astrid

Hallo engel,

> ich möchte aus:
>  
> y = ax² + bx + c
>  
> y = a(x-x1) (x-x2)

[mm] x_1 [/mm] und [mm] x_2 [/mm] sind die Nullstellen der Gleichung [mm] $y=ax^2+bx+c$. [/mm]

Genauer: du mußt also nur mit der p/q-Formel Nullstellen berechnen, wobei [mm] $p=\bruch{b}{a}$ [/mm] und [mm] $q=\bruch{c}{a}$. [/mm]

Wenn es keine gibt, dann gibt es die zweite Form nicht, wenn es eine [mm] (x_1) [/mm] gibt, dann gilt:

[mm] $y=a(x-x_1)^2$ [/mm]

und wenn es zwei verschiedene [mm] (x_1 [/mm] und [mm] x_2) [/mm] gibt, dann gilt:

[mm] $y=a(x-x_1)(x-x_2)$ [/mm]

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]