matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisnormierte Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - normierte Räume
normierte Räume < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normierte Räume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 24.07.2007
Autor: lala14

Aufgabe
E normierter Raum, a, b [mm] \in [/mm] E, [mm] B_1=\{x \in E / \left|| x-a \right||=\left|| x-b \right|| = \bruch {\left|| a-b \right|| }{2}\} [/mm]
Für n>1 gilt [mm] B_n=\{x \in B_n_-_1/ \left|| x-y \right|| \le \bruch{\delta (B_n_-_1)}{2} \forall y \in B_n_-_1\}, [/mm] wobei [mm] \delta (B_n_-_1) [/mm] der durchmesser von [mm] B_n_-_1 [/mm] sein soll.
Zeige:
[mm] \delta (B_n) \le \bruch {\delta (B_n_-_1)}{2} [/mm] und
der Durchschnitt aller [mm] B_n [/mm] soll der Punkt [mm] \bruch{a+b}{2} [/mm] sein.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe versucht den 1-ten Teil der Aufgabe induktiv zu lösen, bin aber nicht sehr weit gekommen. Hat jemand eine bessere Idee wie man das lösen könnte?

        
Bezug
normierte Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 24.07.2007
Autor: dormant

Hi!

Induktion ist schon richtig.

n=1: Zeige [mm] \delta B_{2}\le\bruch{\delta B_{1}}{2}. [/mm]

[mm] \delta B_{1}=\max(|x-y|) [/mm] mit x, y [mm] \in B_{1} [/mm]

Für beliebige x, y [mm] \in B_{1} [/mm] ist [mm] |x-y|=|x-a+a-y|\le [/mm] |a-b|, also ist auch [mm] \delta B_{1}\le [/mm] |a-b| (was aber evtl. nur bei dem zweiten Teil von Bedeutung ist).

An sich reicht eigentlich nur diese Überlegung:

[mm] \delta B_{2}=\max(|x-y|) [/mm] mit x, y [mm] \in B_{2}\subset B_{1} [/mm] (also x, y sind auch in [mm] B_{1} [/mm] nach Definition).

Noch mal laut Definition von [mm] B_{2} [/mm] gilt für alle x, y [mm] \in B_{2} [/mm]

[mm] |x-y|\le\bruch{\delta B_{1}}{2}, [/mm] da x und y auch gleichzeitig in [mm] B_{1} [/mm] sind. Somit muss auch [mm] \max(|x-y|)\le\bruch{\delta B_{1}}{2}. [/mm]

Man kann genau die gleichen Überlegungen benutzen um den Induktionsschritt zu machen, also kommt auch direkt, ohne Induktion, zum Ziel.

Teil zwei ist dir Überlassen. Kann es sein, dass du dich da vertippt hast? Soll der Durchschnitt wirklich der Punkt [mm] \bruch{a+b}{2} [/mm] sein?

Gruß,
dormant



Bezug
                
Bezug
normierte Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Do 09.08.2007
Autor: lala14

Nein, leider habe ich mich nicht vertippt, der Durchschnitt aller [mm] B_n [/mm] soll nur aus dem Punkt  [mm] \bruch{a*b}{2} [/mm] bestehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]