matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisnormierte Räume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - normierte Räume
normierte Räume < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normierte Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mo 01.05.2006
Autor: Sanshine

Aufgabe
Seien A eine nichtleere Menge, f: [mm] A\to \IC, [/mm] und [mm] 1\le p a) [mm] f\in l^p(A) \gdw |f|^p \in l^1(A). [/mm]
b) [mm] l^p(A)\subset l^q(A) [/mm] und für [mm] f\in l^p(A) [/mm] gilt: [mm] ||f||_q\le ||f||_p. [/mm]
c)  A ist abzählbar [mm] unendlich,(a_j)_{j\in \IN} [/mm] ist eine bij. Abzählung von A [mm] \Rightarrow ||f||_p=\summe^{\infty}_{j=0}|f(a_j)|^p)^{\bruch{1}{p}}, [/mm] falls [mm] 1\le [/mm] p< [mm] \infty [/mm] und [mm] ||f||_{\infty}=sup_{j\in \IN}|f(a_j)|. [/mm]
d) A endlich, [mm] C:=|A|^{\bruch{1}{p}-\bruch{1}{q}} \Rightarrow ||f||_p\le C||f||_q. [/mm]

Moin!
Auch hierzu wieder einige FRagen.
a) was genau bezeichnet [mm] |f|^p? [/mm] Wie betrachte ich den Absolutbetrag einer Funktion? Macht das Sinn?
b) hab ich direkt versucht, mach aber wenig sinn, weil ich damit nicht gleich die Aussage [mm] ||f||_q\le ||f||_p [/mm] mit"erschlage". Geht das einigermaßen passabel über Induktion? Oder bekomme ich da (wie ich befürchte) Probleme mit den Wurzeln?
c) Ähem... dazu habe ich überhaupt keine Idee, weil ich nicht ganz den Unterschied sehe.
d) sei n:=|A|. Dann gilt: [mm] C:=n^{\bruch{1}{p}-\bruch{1}{q}}=\bruch{n^{\bruch{1}{p}}}{n^{\bruch{1}{q}}},d.h. [/mm] die Aussage umformuliert wäre doch:
[mm] (\bruch{\summe_{a\in A}|f(a)|^p}{n})^{\bruch{1}{p}}\le (\bruch{\summe_{a\in A}|f(a)|^q}{n})^{\bruch{1}{q}}, [/mm] oder habe ich da mal wieder etwas übersehen?
Wie auch immer, ich hoffe, dass mir jemand helfen kann,
Gruß,
San

        
Bezug
normierte Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Di 02.05.2006
Autor: mathiash

Hallo und guten Morgen,

es ist [mm] |f|^p [/mm] die Abbildung  [mm] x\mapsto |f(x)|^p, [/mm]
und die erste Aufgabe sollte sich direkt aus der Def. ergeben, richtig ?

Bei der (b) sollte sich alles aus  der letzten Ungleichung ergeben (ausgenommen die
Striktheit der Inklusion), also aus

[mm] \f\in l^p(A)\: \Rightarrow\: \parallel f\parallel_q\leq \parallel f\parallel_p. [/mm]

Diese Ungl. beweist man mit Hilfe der sog. Ungleichung der verallg. Mittel:

Für [mm] x_i\in\IR, 1\leq i\leq [/mm] n gilt für [mm] s\leq [/mm] t

[mm] \sqrt{\frac{1}{n}\sum_{i=1}^nx_i^s}_{s}\leq \sqrt{\frac{1}{n}\sum_{i=1}^nx_i^t}_{t} [/mm]

Zur (c): Das nimmt man entweder für den abz. fall direkt als definition oder stellt fest, dass
für den abz. Fall das lebesgue-Integral sich so schreiben läßt.

Zur 9d): Sollte stimmen, und dann wendet man wieder die obige Ungl. an.

Schau zum Thema auch mal bei Wikipedia - oder besser: In einem Lehrbuch zur Funktionalanalysis, zB dem
von Wilhelm Alt (''Lineare Funktionalanalysis - Eine anwendungsorientierte Einführung'', Springer).

Gruss,

Mathias







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]