normalenform d.ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | gegeben sind die gleichungen von zwei sich schneidenden geraden. beide geraden liegen damit in einer ebene. bestimmen sie fpr diese ebene eine gleichung in normalenform.
[mm] \vec{x_{1}}=\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}+t\begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}
[/mm]
[mm] \vec{x_{2}}=\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}+s\begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix} [/mm] |
hallo,
bei dieser aufgabe komme ich irgendwie nicht weiter. also soweit ich weiss muss die ebene ja von den geraden abhängig sein damit die geraden in ihr liegen. nur wie fange ich denn da an? also ich finde keinen ansatz dafür. wäre nett wenn mir jemand helfen könnte.
lg
|
|
|
|
Hallo sunny!
Für die Darstellung in Normalenform $E \ : \ [mm] \left[ \ \vec{x}-\vec{p} \ \right]*\vec{n} [/mm] \ = \ 0$ benötigst Du den Normalenvektor [mm] $\vec{n}$ [/mm] der Ebene.
Diesen erhältst Du entweder über das Kreuzprodukt der beiden Richtungsvektoren oder aber aus einem Gleichungssystem mittels Skalarprodukt mit den Richtungsvektoren.
Gruß vom
Roadrunner
|
|
|
|
|
okay also muss ich das dann in etwa so machen:
[mm] \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}*\begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix}=\begin{pmatrix} 28 \\ 1 \\ 0 \end{pmatrix}=\vec{n}
[/mm]
okay und dann in die normalenform:
[mm] E:(\vec{x}-\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix})*\begin{pmatrix} 28 \\ 1 \\ 0 \end{pmatrix}
[/mm]
so vielleicht?
und nur mal so nebenbei: warum muss ich denn da die richtungsvektoren nehmen und nicht die stützvektoren?
|
|
|
|
|
Hey,
> okay also muss ich das dann in etwa so machen:
> [mm]\begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}*\begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix}=\begin{pmatrix} 28 \\ 1 \\ 0 \end{pmatrix}=\vec{n}[/mm]
>
Das stimmt so nicht. Du musst hier das Kreuzprodukt bilden, damit du einen Vektor erhälst, der senkrecht auf beiden steht, also:
[mm] $\vektor{4 \\ 1 \\ 0 }\times \vektor{7 \\ 1 \\ 1} [/mm] = [mm] \vec{n}$
[/mm]
> okay und dann in die normalenform:
> [mm]E:(\vec{x}-\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix})*\begin{pmatrix} 28 \\ 1 \\ 0 \end{pmatrix}[/mm]
>
> so vielleicht?
> und nur mal so nebenbei: warum muss ich denn da die
> richtungsvektoren nehmen und nicht die stützvektoren?
Die beiden Richtungsvektoren sind gleichzeitig die beiden Spannvektoren der Ebene. Sie geben an, wie und in welche Richtung die Ebene aufgespannt wird.
Die Stützvektoren geben dir ja nur die Lage im Raum an.
Gruß Patrick
|
|
|
|