normale Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Sa 26.06.2010 | Autor: | math101 |
Aufgabe | Sei K ein Körper, [mm] K\subset \Omega [/mm] ein algebraischer Abschluß, und [mm] K\subset E_i \subset \Omega [/mm] eine Familie von Zwischenkörpern. Angenommen, die [mm] E_i \supset{K} [/mm] sind normal. Beweisen Sie, dass dann auch [mm] K\subset \bigcap_{i´\in I}E_i [/mm] und [mm] K\subset K(\bigcup_{i\in I}E_i) [/mm] normal sind. |
Hallo, alle zusammen!!
Ich sitze an der Aufgabe schon eine Weile und
habe keine Ahnung wie ich dran gehen soll.
Ich muss ja zeigen, dass [mm] K\subset \bigcap_{i´\in I}E_i [/mm] normal ist, d.h
es ist zu zeigen, dass
1. [mm] \bigcap_{i´\in I}E_i [/mm] algebraisch und
2. jedes irreduzieble Polynom [mm] f\in{K[X]}, [/mm] das, wenn es eine Wurzel [mm] \alpha [/mm] in [mm] \bigcap_{i´\in I}E_i [/mm] hat,
in [mm] \bigcap_{i´\in I}E_i [/mm] komplett in Linearfaktoren zerfället.
Oder wir haben in der Vorlesung einen Satz, der besagt:
[mm] K\subset \bigcap_{i´\in I}E_i [/mm] normal [mm] \gdw K\subset \bigcap_{i´\in I}E_i [/mm] ist Zerfällungskörper einer Familie nicht kosntanter Polynome [mm] f_j\in{K[X]},j\in{J}
[/mm]
Aber wie ich jetzt das beweisen soll, da bin völlig ratlos...
Könnte mir Jemand paar Tips geben, das wäre sehr nett !!!
Vielen Dank im Voraus!!!
GRUß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:53 Sa 26.06.2010 | Autor: | felixf |
Moin!
> Sei K ein Körper, [mm]K\subset \Omega[/mm] ein algebraischer
> Abschluß, und [mm]K\subset E_i \subset \Omega[/mm] eine Familie von
> Zwischenkörpern. Angenommen, die [mm]E_i \supset{K}[/mm] sind
> normal. Beweisen Sie, dass dann auch [mm]K\subset \bigcap_{i´\in I}E_i[/mm]
> und [mm]K\subset K(\bigcup_{i\in I}E_i)[/mm] normal sind.
> Hallo, alle zusammen!!
> Ich sitze an der Aufgabe schon eine Weile und
> habe keine Ahnung wie ich dran gehen soll.
> Ich muss ja zeigen, dass [mm]K\subset \bigcap_{i´\in I}E_i[/mm] ,
Das $K [mm] \subset \bigcap_{i \in I} E_i$ [/mm] ist, ist einfach.
> d.h
> es ist zu zeigen, dass
> 1. [mm]\bigcap_{i´\in I}E_i[/mm] algebraisch und
Das ist einfach.
> 2. jedes irreduzieble Polynom [mm]f\in{K[X]},[/mm] das, wenn es
> eine Wurzel [mm]\alpha[/mm] in [mm]\bigcap_{i´\in I}E_i[/mm] hat,
> in [mm]\bigcap_{i´\in I}E_i[/mm] komplett in Linearfaktoren
> zerfället.
Das ist auch nicht sehr schwer: nimm dir doch ein solches Polynom. Dieses kannst du ueber [mm] $\Omega$ [/mm] in Linearfaktoren aufspalten. Was kannst du jetzt in Bezug auf die Nullstellen in jedem [mm] $E_i$ [/mm] sagen? Folgt da etwas draus ueber [mm] $\bigcap_{i\in I} E_i?
[/mm]
> Oder wir haben in der Vorlesung einen Satz, der besagt:
> [mm]K\subset \bigcap_{i´\in I}E_i[/mm] normal [mm]\gdw K\subset \bigcap_{i´\in I}E_i[/mm]
> ist Zerfällungskörper einer Familie nicht kosntanter
> Polynome [mm]f_j\in{K[X]},j\in{J}[/mm]
Das brauchst du, um zu zeigen, dass [mm] $K(\bigcup_{i\in I} E_i)$ [/mm] normal ist.
Sei [mm] $\{ f_{i,j} \mid j \in J_i \}$ [/mm] eine Familie von Polynomen in $K[x]$, so dass [mm] $E_i$ [/mm] der Zerfaellungskoerper dieser Familie ist. Zeige, dass [mm] $K(\bigcup_{i\in I} E_i)$ [/mm] der Zerfaellungskoerper der Familie [mm] $\{ f_{i,j} \mid i \in I, j \in J_i \}$ [/mm] ist.
LG Felix
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 16:11 So 27.06.2010 | Autor: | math101 |
Hallo, Felix!!
> > Sei K ein Körper, [mm]K\subset \Omega[/mm] ein algebraischer
> > Abschluß, und [mm]K\subset E_i \subset \Omega[/mm] eine Familie von
> > Zwischenkörpern. Angenommen, die [mm]E_i \supset{K}[/mm] sind
> > normal. Beweisen Sie, dass dann auch [mm]K\subset \bigcap_{i´\in I}E_i[/mm]
> > und [mm]K\subset K(\bigcup_{i\in I}E_i)[/mm] normal sind.
> > Ich muss ja zeigen, dass [mm]K\subset \bigcap_{i´\in I}E_i[/mm] ,
>
> Das [mm]K \subset \bigcap_{i \in I} E_i[/mm] ist, ist einfach.
>
> > d.h
> > es ist zu zeigen, dass
> > 1. [mm]\bigcap_{i´\in I}E_i[/mm] algebraisch und
>
> Das ist einfach.
In der Vorleung steht: Ist [mm] K\subset\Omega [/mm] algebraisch,
dann auch [mm] K\subset\bigcap_{i\in{I}}E_i [/mm] und [mm] \bigcap_{i\in{I}}E_i\subset\Omega [/mm] algebraisch.
Das gilt weil [mm] \Omega [/mm] algebraisch abgeschloßen und somit algebraisch ist.
> > 2. jedes irreduzieble Polynom [mm]f\in{K[X]},[/mm] das, wenn es
> > eine Wurzel [mm]\alpha[/mm] in [mm]\bigcap_{i´\in I}E_i[/mm] hat,
> > in [mm]\bigcap_{i´\in I}E_i[/mm] komplett in Linearfaktoren
> > zerfället.
>
> Das ist auch nicht sehr schwer: nimm dir doch ein solches
> Polynom. Dieses kannst du ueber [mm]$\Omega$[/mm] in Linearfaktoren
> aufspalten. Was kannst du jetzt in Bezug auf die
> Nullstellen in jedem [mm]$E_i$[/mm] sagen? Folgt da etwas draus
> ueber [mm]$\bigcap_{i\in I} E_i?[/mm]
Sei [mm] f\in{K[X]} [/mm] irreduzibel über K. Da [mm] \Omega [/mm] algebraisch abgeschloßen,
zerfällt f über [mm] \Omega [/mm] komplett in Linearfaktoren.
Somit ist [mm] \Omega [/mm] ein Zerfällungskörper von f mit [mm] \Omega=K(\lambda_1,...,\lambda_n).
[/mm]
Kann ich dann sagen, dass wenn [mm] K\subset{E_i}\subset\Omega, [/mm] dann liegt [mm] \lambda_i\in{E_i}? [/mm]
Folgt dann daraus, dass [mm] \Omega=\bigcap_{i\in{I}}E_i [/mm] ?
Und alles zusammen sollte ergeben, dass [mm] K\In\bigcap_{i\in{I}}E_i [/mm] normal ist.
> > Oder wir haben in der Vorlesung einen Satz, der besagt:
> > [mm]K\subset \bigcap_{i´\in I}E_i[/mm] normal [mm]\gdw K\subset \bigcap_{i´\in I}E_i[/mm]
> > ist Zerfällungskörper einer Familie nicht kosntanter
> > Polynome [mm]f_j\in{K[X]},j\in{J}[/mm]
>
> Das brauchst du, um zu zeigen, dass [mm]K(\bigcup_{i\in I} E_i)[/mm]
> normal ist.
>
> Sei [mm]\{ f_{i,j} \mid j \in J_i \}[/mm] eine Familie von Polynomen
> in [mm]K[x][/mm], so dass [mm]E_i[/mm] der Zerfaellungskoerper dieser Familie
> ist. Zeige, dass [mm]K(\bigcup_{i\in I} E_i)[/mm] der
> Zerfaellungskoerper der Familie [mm]\{ f_{i,j} \mid i \in I, j \in J_i \}[/mm]
> ist.
Bei der Teilaufgabe wird [mm] K\subset{E_i} [/mm] von den Nullstellen von [mm] f_{i,j}\in{K[X]} [/mm] erzeugt.
Dann sollte [mm] \bigcup_{i\in{I}}E_i [/mm] die Vereinigung aller Nullstellen von [mm] \{ f_{i,j} \mid i \in I, j \in J_i \} [/mm] sein.
Aber wie ich das jetzt mathematisch aufschreiben soll, habe ich keine Ahnung...
Vielen-vielen Dank für deine Hilfe!!
Beste Grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:28 Mo 28.06.2010 | Autor: | math101 |
Kann mir denn keiner helfen?
BiiiiiTTE!!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Di 29.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|