nilpotente Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:03 Mi 27.04.2005 | Autor: | DeusRa |
Hey,
habe noch eine Aufgabe:
Es seinen [mm]V[/mm] ein [mm]K[/mm]-Vektorraum mit [mm]dim V = n[/mm] und [mm]f:V\to V[/mm] ein nilpotener Endomorphismus.
Zeigen Sie durch Induktion nach[mm]n[/mm]:
Es existiert eine Basis [mm]B[/mm] von [mm]V[/mm] mit
[mm]f \to[sup]B[/sup] \pmat{ 0 & ... & x \\ . & . & . \\ . & . & . \\ 0 & . & 0 }.
[/mm]
Meine Idee ist ja, dass [mm]f[sup]m[/sup]=0[/mm].
Induktionsanfang:
[mm]n=2 \Rightarrow \pmat{ 0 & x \\ 0 & 0 }*\pmat{ 0 & x \\ 0 & 0 }=\pmat{ 0 & 0 \\ 0 & 0 }.
[/mm]
Induktionsbehauptung: [mm]f[sup]n-1[/sup]=0.[/mm].
Aber wie beweist man das per Induktion ??
Vor allem, da ja eigentlich nach einer Basis gefragt ist.........
Bei dieser Aufgabe habe ich lauter Fragezeichen über dem Kopf.
Wäre über jede Hilfe dankbar.
Danke.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:36 Fr 29.04.2005 | Autor: | DaMenge |
Hi,
bist du sicher, dass da nur ein einzelnes oberes x steht?
Wenn dort nämlich ein echte obere Dreiecksmatrix stehen würde, wäre es für mich logischer.
(und auch einfacher zu beantworten - einfach folgern, dass der Kern nicht trivial ist, also nicht injektiv, also nicht vollen rang, also beim Gaußalgo echte obere Dreiecksmatrix und dieser beschreibt auch nur einen Basiswechsel)
viele Grüße
DaMenge
|
|
|
|