matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungn-mal differenzierbare Funktio
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - n-mal differenzierbare Funktio
n-mal differenzierbare Funktio < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-mal differenzierbare Funktio: Beweis mit Induktion
Status: (Frage) beantwortet Status 
Datum: 12:40 So 17.05.2009
Autor: Mirage.Mirror

Aufgabe
Gegeben seien Stellen [mm] x_0, [/mm] . . . , [mm] x_n [/mm]  /in  /IR mit [mm] x_0 [/mm] < [mm] x_1 [/mm] < · · · < [mm] x_n [/mm]
sowie eine n-mal differenzierbare Funktion
f : [mm] \IR \to \IR [/mm] mit [mm] f(x_0) [/mm] = · · · = [mm] f(x_n). [/mm]

Zeigen Sie (z.B. mittels Induktion):
Es existiert ein [mm] \alpha \in [x_0, x_n] [/mm] mit [mm] f^{(n)}(\alpha) [/mm] = 0.

Hallo,
ich möchte diese Aufgabe mittels Induktion lösen, da dies als Hinweis gegeben war.

Ich bräuchte aber erst einmal Hilfe beim Ansatz, da ich mir nicht ganz sicher bin, wie ich die Induktion "laufen lassen" soll.
Muss ich zeigen, dass alle [mm] f^{(n+1)}(\alpha) [/mm] = 0 sind oder dass [mm] f^{(n+1)} (\alpha) [/mm] oder gar, dass [mm] f^{(n)}(\alpha)=f^{(n+1)}(\alpha) [/mm] = 0.

Und dabei hätte ich noch eine weitere Frage:
[mm] \alpha [/mm] ist ja ein Element aus dem Intervall, das heißt, ich muss darauf achten, dass immer bei jedem Schritt für mindestens ein Element des Intervalls meine Funktion stimmt, nicht für alle daraus, oder? Ich bin bei solchen Aufgaben immer unsicher, die Frage an sich ist sicher trivial. Entschuldigung.

Für Tipps wäre ich sehr dankbar.

        
Bezug
n-mal differenzierbare Funktio: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 So 17.05.2009
Autor: Gonozal_IX

Hallo Jessica,

ich geb dir mal nen Hinweis:

Du weisst [mm] f(x_0) [/mm] = [mm] f(x_1), [/mm] dann Satz von Rolle
Du weisst [mm] f(x_1) [/mm] = [mm] f(x_2), [/mm] dann Satz von Rolle

Nach Satz von Rolle hast du nun 2 Punkte für die was gilt?
Und dann, richtig, Satz von Rolle ;-)
and so on and so on

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]