matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikmonotone Gitterwege
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - monotone Gitterwege
monotone Gitterwege < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monotone Gitterwege: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 03.12.2008
Autor: Lyrn

Aufgabe
In der Vorlesung wurde gezeigt, dass die Anzahl monotoner Wege im 2-dimensionalen Gitter, die vom Punkt (0,0) zum Punkt (n,k) führen, gleich [mm] \vektor{n+k \\ k} [/mm] ist.

a)Wie groß ist die Anzahl [mm] a_{k} [/mm] der monotonen Wege vom Punkt A = (0, 0) zum Punkt
B = (n, n), die dabei auch noch den Punkt [mm] C_{k} [/mm] = (k, k) durchlaufen, wobei 0 < k < n
ist?

Nabend,
ich weiß, dass die jeder Weg durch einen Punkt auf der Diagonalen des Gitters führt. Also müsste der Punkt (n,k) ja auch auf dieser Diagonalen liegen oder?
Irgendwie fehlt mir der Ansatz bei dieser Aufgabe, hat jemand einen Ratschlag für mich?

Gruß Lyrn

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
monotone Gitterwege: Tipp
Status: (Antwort) fertig Status 
Datum: 14:22 Do 04.12.2008
Autor: generation...x

Eigentlich ganz einfach: Auf dem Weg von A nach B musst du durch [mm] C_k. [/mm] Also berechnest du erst die Anzahl der Möglichkeiten von A nach [mm] C_k [/mm] und dann die Anzahl der möglichen Wege von [mm] C_k [/mm] nach B. Das Ergebnis ist dann das Produkt (warum?).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]