modulo Aufzeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:23 So 03.10.2010 | Autor: | kushkush |
Aufgabe | Es soll gezeigt werden, dass für $q [mm] \ne [/mm] 0 $ und $M$, zwei fest gewählte Zahlen, dass für $r,t [mm] \in \IN$ [/mm] und $x,y [mm] \in \IZ$ [/mm] gilt:
a) $x mod(M) [mm] \equiv [/mm] ymod(M)$, wenn $x+q [mm] \equiv [/mm] y+q mod(M)$.
b) $xmod(M) [mm] \equiv [/mm] ymod(M) [mm] \Rightarrow [/mm] x [mm] \cdot q\equiv [/mm] y [mm] \cdot [/mm] q mod(M)$
c) [mm] $x^{r} \equiv [/mm] ymod(M) [mm] \Rightarrow (x^{r})^{t} \equiv y^{t} [/mm] mod ( M)$ |
Hallo,
a)
[mm] $x+q\equiv [/mm] y+q mod(M) [mm] \Rightarrow [/mm] (x-q)-(y+q) = (x-y) [mm] \gdw [/mm] M|(x+q)-(x+q)$
b) [mm] $qx\equiv [/mm] qy mod(M) [mm] \Rightarrow [/mm] (qx)-(qy)=q(x-y) [mm] \gdw [/mm] M|q(x-y)$
c) [mm] $x^{rt}\equiv y^{t}mod(M) \Rightarrow (x^{rt}-y^{t}$
[/mm]
dann stecke ich fest.
Ist das richtig gelöst soweit?
Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:13 Mo 04.10.2010 | Autor: | felixf |
Moin!
> Es soll gezeigt werden, dass für [mm]q \ne 0[/mm] und [mm]M[/mm], zwei fest
> gewählte Zahlen, dass für [mm]r,t \in \IN[/mm] und [mm]x,y \in \IZ[/mm]
> gilt:
>
> a) [mm]x mod(M) \equiv ymod(M)[/mm], wenn [mm]x+q \equiv y+q mod(M)[/mm].
> b)
> [mm]xmod(M) \equiv ymod(M) \Rightarrow x \cdot q\equiv y \cdot q mod(M)[/mm]
Warum auch immer hier $q [mm] \neq [/mm] 0$ sein soll... Manchmal verstehe ich Aufgabensteller nicht.
> c) [mm]x^{r} \equiv ymod(M) \Rightarrow (x^{r})^{t} \equiv y^{t} mod ( M)[/mm]
>
> Hallo,
>
>
> a)
>
> [mm]x+q\equiv y+q mod(M) \Rightarrow (x-q)-(y+q) = (x-y) \gdw M|(x+a)-(x+y)[/mm]
Da fehlt was in der Mitte, so etwas wie "$M$ teilt".
Und das ganz rechts macht keinen Sinn. Was ist $a$?! Und was willst du mit $(x + a) - (x + y)$ machen?!
> b) [mm]qx\equiv qy mod(M) \Rightarrow (qx)-(qy)=q(x-y) \gdw M|q(x-y)[/mm]
Du willst zeigen, dass $q x [mm] \equiv [/mm] q y [mm] \pmod{M}$ [/mm] ist. Und nicht annehmen, dass es so ist!
> c) [mm]x^{rt}\equiv y^{t}mod(M) \Rightarrow (x^{rt}-y^{t}[/mm]
Hier solltest du nicht mit der Holzhammermethode anfangen. Zeige erstmal eine allgemeinere Aussage als b):
Sind $x, y, q, r [mm] \in \IZ$ [/mm] mit $x [mm] \equiv [/mm] y [mm] \pmod{M}$ [/mm] und $q [mm] \equiv [/mm] r [mm] \pmod{M}$, [/mm] so gilt $x q [mm] \equiv [/mm] y r [mm] \pmod{M}$.
[/mm]
Das kannst du aus b) folgern, indem du b) zweimal verwendest.
Mit dieser Aussage kannst du c) per Induktion nach $t$ zeigen. (Setze dazu $z := [mm] x^r$; [/mm] du hast $z [mm] \equiv [/mm] y [mm] \pmod{M}$ [/mm] und willst [mm] $z^t \equiv y^t \pmod{M}$ [/mm] zeigen.)
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:17 Di 05.10.2010 | Autor: | kushkush |
$ [mm] x+q\equiv [/mm] y+q mod(M) [mm] \Rightarrow [/mm] (x-q)-(y+q) = (x-y) [mm] \Rightarrow [/mm] M|(x-y) [mm] \gdw [/mm] M|(x+q)-(y+q) $
Bei b)
[mm] $x\equiv [/mm] y modm, [mm] q\equiv [/mm] r modm [mm] \Rightarrow [/mm] m|(x-y) [mm] \wedge [/mm] m|(q-r) [mm] \Rightarrow [/mm] m|(x-y)q [mm] \wedge [/mm] m|(q-r)y [mm] \Rightarrow [/mm] m|((xq-yq)+yq-yr)=(xq-yr) [mm] \gdw xq\equiv [/mm] yr mod m$
das heisst b) wäre ein Spezialfall der Multiplikation oder ? Wo [mm] $c\equiv [/mm] c mod m, [mm] x\equiv [/mm] y mod m [mm] \Rightarrow [/mm] m|(x-y) [mm] \wedge [/mm] m|(c-c) [mm] \Rightarrow [/mm] m|(x-y)c [mm] \wedge [/mm] m|(c-c)y [mm] \Rightarrow [/mm] m|((xc-yc)+(yc-yc)=(xc-yc) [mm] \gdw [/mm] xc [mm] \equiv [/mm] yc mod m $
bei c verstehe ich nicht wie ich das per Induktion zeigen kann.
[mm] $z^{t} \equiv y^{t}modm [/mm] $ gilt das als gezeigt, so bald ich zeige dass [mm] $z^{2} \equiv y^{2} [/mm] modm [mm] \gdw [/mm] z [mm] \equiv [/mm] y mod m$ weil ich ja diesen Zeigeschritt von [mm] z^{1} [/mm] zu [mm] z^{2} [/mm] unendlich oft wiederholen kann??
$z [mm] \equiv [/mm] y modm [mm] \Rightarrow m|((z-y)z+(z-y)y)=(z^{2}-y^{2})\gdw z^{2} \equiv y^{2} [/mm] modm$
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:13 Mi 06.10.2010 | Autor: | abakus |
> [mm]x+q\equiv y+q mod(M) \Rightarrow (x-q)-(y+q) = (x-y) \Rightarrow M|(x-y) \gdw M|(x+q)-(y+q)[/mm]
>
> Bei b)
>
> [mm]x\equiv y modm, q\equiv r modm \Rightarrow m|(x-y) \wedge m|(q-r) \Rightarrow m|(x-y)q \wedge m|(q-r)y \Rightarrow m|((xq-yq)+yq-yr)=(xq-yr) \gdw xq\equiv yr mod m[/mm]
>
> das heisst b) wäre ein Spezialfall der Multiplikation oder
> ? Wo [mm]c\equiv c mod m, x\equiv y mod m \Rightarrow m|(x-y) \wedge m|(c-c) \Rightarrow m|(x-y)c \wedge m|(c-c)y \Rightarrow m|((xc-yc)+(yc-yc)=(xc-yc) \gdw xc \equiv yc mod m[/mm]
>
> bei c verstehe ich nicht wie ich das per Induktion zeigen
> kann.
>
> [mm]z^{t} \equiv y^{t}modm[/mm] gilt das als gezeigt, so bald ich
> zeige dass [mm]z^{2} \equiv y^{2} modm \gdw z \equiv y mod m[/mm]
> weil ich ja diesen Zeigeschritt von [mm]z^{1}[/mm] zu [mm]z^{2}[/mm]
> unendlich oft wiederholen kann??
Im Prinzip ja. Nur die Verwendung des [mm] \gdw [/mm] -Pfeiles ist falsch.
Auch aus z [mm] \equiv [/mm] -y mod m folgt [mm] z^{2} \equiv y^{2} [/mm] mod m.
Gruß Abakus
>
> [mm]z \equiv y modm \Rightarrow m|((z-y)z+(z-y)y)=(z^{2}-y^{2})\gdw z^{2} \equiv y^{2} modm[/mm]
>
>
> Danke
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:52 Mi 06.10.2010 | Autor: | kushkush |
Ok Danke soweit, aber wie kann ich das jetzt induzieren, oder reicht das schon als Beweis?
|
|
|
|
|
Hallo,
> Ok Danke soweit, aber wie kann ich das jetzt induzieren,
> oder reicht das schon als Beweis?
Mache einfach den Induktionsschritt [mm]t\to t+1[/mm]
IV: Sei [mm]t\in\IN[/mm] und gelte [mm]x^q \ \equiv \ y^q \ \operatorname{mod}(m)\ \ \text{für alle} \ q\le t[/mm]
Dann gilt also [mm]x^t \ \equiv \ y^t \ \operatorname{mod}(m)[/mm] und [mm]x \ \equiv \ y \ \operatorname{mod}(m)[/mm]
Mit dem oben gezeigten folgt: [mm]x^t\cdot{}x \ \equiv \ y^t\cdot{}y \ \operatorname{mod}(m)[/mm], also die Beh.
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:52 Mi 06.10.2010 | Autor: | kushkush |
Danke!
|
|
|
|