matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmische Geometriemodifiziertes Newton-Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algorithmische Geometrie" - modifiziertes Newton-Verfahren
modifiziertes Newton-Verfahren < Algorithm. Geometrie < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

modifiziertes Newton-Verfahren: Verständnisfragen
Status: (Frage) überfällig Status 
Datum: 10:13 Sa 15.12.2007
Autor: Yadis

Aufgabe
Ein modifiziertes Newtonverfahren besteht darin, dass man im Punkt xi statt einer tangierenden Geraden eine tangierende Parabel q(x) an die Funktion f(x) anlegt, um eine Nullstelle ξ mit f(ξ) = 0 zu finden. Für f(x) gelte f'(x) [mm] \not= [/mm] 0 und f''(x) [mm] \not= [/mm] 0 in einer Umgebung von ξ. Die quadratische Funktion q(x) wird so bestimmt, dass gilt:
q(xi) = f(xi)
q'(xi) = f'(xi)
q''(xi) = f''(xi)
Als nächster Punkt der Iterationsfolge wird nun derjenige Schnittpunkt der Parabel mit der x–Achse gewählt, der die Konvergenz xi → ξ für i → ∞ gewährleistet.

a) Konstruieren Sie dieses Verfahren für eine beliebige Funktion f(x). Begründen Sie die Wahl des Schnittpunktes.
b) Entwickeln Sie sowohl das normale als auch das modifizierte Newtonverfahren für die
Funktion f(x) = ln x, x > 0. Berechnen Sie jeweils den ersten Iterationswert für den Startwert x0 = e.

Hallo, es geht um Teilaufgabe a)
Unter der Aufgabenstellung oben haben wir schon viel hin und her probiert und allerlei Funktionen entwickelt, die aber alle entweder falsch waren oder aber ein neues Verfahren beschreiben, dass nicht das gewünschte ist.
Die eigentliche Frage:

Nach ein wenig Suchen sind wir auf ein Verfahren mit dem Namen Halley-Verfahren gestoßen (in einem Lehrbuch, gibts sicher auch im Netz). Dieses Verfahren heißt auch Verfahren der tangierenden Hyperbeln. Die Entwicklung dazu ist allerdings in einer Form, von der ich mir nicht vorstellen kann, dass wir das so machen sollen.
Weiß jemand, ob das Halley-Verfahren genau der Aufgabenstellung entspricht evtl mit Begründung?
edit: Inzwischen weiß ich, dass es nicht das Halley-Verfahren ist, da dort g(xi)=f(xi) nicht erfüllt ist.

Hat jemand eine Idee, welches Verfahren es sonst sein kann, bzw wie man es kontruieren kann?

Vielen Dank für jede Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
modifiziertes Newton-Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Sa 15.12.2007
Autor: Yadis

Habe inzwischen herausgefunden, dass es nicht das Halley-Verfahren ist, weil dort (im Beispiel von ln x) schonmal nicht g(x)=f(x) gilt. Die Frage nach dem richtigen Verfahren ist daher weiterhin offen.

Bezug
        
Bezug
modifiziertes Newton-Verfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 18.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]