matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysismetrischer raum, vollständig
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - metrischer raum, vollständig
metrischer raum, vollständig < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer raum, vollständig: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:25 So 22.01.2006
Autor: Angie

Hallo,

Ich soll zeigen, dass der Folgenraum [mm] ({0,2})^{N_{0}} [/mm] ( sollen mengenklammern sein) mit der Metrik:
[mm] d((a_{n})_{0}^{\infty},((b_{n})_{0}^{\infty}))= \summe_{n=0}^{\infty} 2^{-n} |a_{n}-b_{n}| [/mm] vollständig ist.

Ich müsste also zeigen, dass jede Cauchyfolge darin konvergiert.
Mir ist nur leider gar nicht klar, wie ich das anstellen soll und ich wäre für einen kleinen Tipp sehr dankbar!

        
Bezug
metrischer raum, vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 22.01.2006
Autor: Hanno

Hallo.

> Mir ist nur leider gar nicht klar, wie ich das anstellen soll und ich wäre für einen kleinen Tipp sehr dankbar!

Du könntest versuchen, den Grenzwert zu konstruieren. Zur Bestimmung der ersten $k$ Folgenglieder wählst du ein spätes Folgenglied in der dir gegebenen Cauchy-Folge [von Folgen] aus, sodass es sich von den folgenden Folgen um weniger als [mm] $2^{-k}$ [/mm] unterscheidet [bzgl. der gegebenen Metrik]. Dann müssen alle folgenden Folgen mit der gewählten Folge in den ersten $k$ Folgengliedern übereinstimmen.
So konstruierst du also eine neue Folge. Zu zeigen, dass diese der Grenzwert der dir gegebenen Folgen-"Folge" ist, ist dann nicht mehr schwierig.

Versuchst du es einmal?

Liebe Grüße,
Hanno

Bezug
                
Bezug
metrischer raum, vollständig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 22.01.2006
Autor: Angie

Vielen Dank für deine Antwort,
ich müsste also einen Grenzwert (eine Folge) konstruieren und dann zeigen, dass die Folge der Grenzwert der Cauchyfolge (von Folgen) ist. Habe ich dann damit auch gezeigt, dass wirklich alle Cauchyfolgen konvergieren?
Ich verstehe aber nicht ganz deine Erklärung wie ich den Grenzwert konstruieren soll...

Bezug
                        
Bezug
metrischer raum, vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 So 22.01.2006
Autor: Hanno

Hallo.

> ich müsste also einen Grenzwert (eine Folge) konstruieren und dann zeigen, dass die Folge der Grenzwert der Cauchyfolge (von Folgen) ist.

Genau.

> Habe ich dann damit auch gezeigt, dass wirklich alle Cauchyfolgen konvergieren?

Ja, denn die betrachtete Cauchy-Folge war beliebig gewählt.


> Ich verstehe aber nicht ganz deine Erklärung wie ich den Grenzwert konstruieren soll...

Was genau verstehst du nicht?

Anschaulich: da eine Cauchy-Folge vorliegt, unterscheiden sich die Glieder immer weniger; irgendwann unterscheiden sie sich die Folgen so wenig, dass sie in einer vorher gewählten Anzahl der ersten Folgenglieder übereinstimmen müssen.

Formeller: Es sei [mm] $((f^n_{i})_{i\in \IN})_{n\in \IN}$ [/mm] die gegebene Cauchy-Folge von Folgen [mm] $(f^n_i)_{i\in \IN}$. [/mm] Für ein [mm] $k\in\IN_0$ [/mm] existiert nun ein [mm] $n_k\in\IN$ [/mm] so, dass [mm] $d(f^{m},f^{n_k})<2^{-k}$ [/mm] für alle [mm] $m\geq n_k$. [/mm] Daraus folgt [mm] $f^m_{k} [/mm] = [mm] f^{n_k}_{k}$ [/mm] für alle [mm] $m\geq n_k$, [/mm] da anderenfalls [mm] $d(f^m_{k},f^{n_k}_{k})\geq 2^{-k}|f^m_{k}-f^{n_k}_{k}|\geq 2^{-k}$ [/mm] wäre - Widerspruch.
Ab [mm] $f^{n_k}$ [/mm] stimmen also alle Folgen in Folgenglieder $k$ (und logischer weise auch in allen vorangegangenen) überein.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]