matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrametrische Räume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - metrische Räume
metrische Räume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Do 15.11.2007
Autor: Phecda

Hi
im rudin steht eine definition unter der ich mir nix vorstellen kann.
eine Menge E heißt konvex, wenn für x [mm] \in [/mm] E, y [mm] \in [/mm] E und
0 < g < 1 stets
gx + (1-g)y [mm] \in [/mm] E gilt.

Wass soll diese Definition aussagen? Und warum ist eine Kugel konvex. Ich weiß wann ne linse konvex ist. aber was hat diese allg. definition mit dem terminus "konvex" zu tun?

danke mfg

        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Do 15.11.2007
Autor: leduart

Hallo
Auch ne konvexe Linse ist math. konvex.
2. Konvex wird so einfach definiert!
3. im [mm] R^2 [/mm] und [mm] R^3 [/mm] bedeutet es anschaulich, dass es keine Dellen nach innen hat. ne Kugel, ein Würfel, ein Tetraeder usw. sind konvex, aber wenn du irgendwo ne Beule nach innen rein machst nicht mehr. Dein Kopf ist nicht konvex!
Folge: du kannst einen Punkt deiner Nase nicht mit einer Geraden mit jedem Punkt  am übrigen Kopf verbinden, die ganz durch deinen Kopf durchgeht.
Wenn x,y Punkte im [mm] R^3 [/mm] wären ist g*x+(1-g)*y genau die Verbindungsstrecke!
Auf allgemeine Mengen wird dieser aus der Anschaung stammende Begriff halt verallgemeinert.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]