matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriemessbare funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - messbare funktionen
messbare funktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

messbare funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 26.10.2010
Autor: nueppi

Aufgabe
Es sei T die Standardtopologie auf [mm] \IR. [/mm] Zeigen Sie,dass die folgende Funktion [mm] \mathcal{A}T [/mm] - [mm] \mathcal{A}T- [/mm] messbar ist.

g(x) = sin [mm] (\wurzel{x}) [/mm]


Hallo alle zusammen,
man muss ja zeigen, dass für jedes a mit a= g^-1(b) mit b [mm] \in [/mm] AT ,a [mm] \in [/mm] AT gilt.
Ich bin davon ausgegangen, dass AT die Borel- sigma- Algebra ist, also Menge die alle offenen und abgeschlossen Mengen aus [mm] \IR [/mm] enthält. Da auch jede Vereinigung und jedes Komplement eines Elementes aus AT wieder in der Menge ist, ist doch auch jede Zahl (a oder b) aus [mm] \IR [/mm] in AT wieder enthalten oder nicht? und wenn das der Fall ist, dann bin ich ja eigentlich schon fertig..aber das kann ja nicht so einfach sein. Könnt ihr mir sagen was mein Fehler ist.
Danke :)

        
Bezug
messbare funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Mi 27.10.2010
Autor: fred97

Machen wirs zunächst allgemein:

Sei [mm] \mathcal{A} [/mm] eine [mm] \sigma [/mm] - Algebra auf X und [mm] \mathcal{B} [/mm] eine [mm] \sigma [/mm] - Algebra auf Y und  $f:X [mm] \to [/mm] Y$ eine Abb..

Weier sei [mm] \mathcal{E} [/mm] eine Teilmenge der Potenzmenge von Y mit [mm] $\mathcal{B} [/mm] = [mm] \sigma(\mathcal{E} [/mm] ).$

Dann gilt (das hattet Ihr sicher):

  (*)   f ist [mm] \mathcal{A} [/mm] - [mm] \mathcal{B} [/mm] - messbar   [mm] \gdw f^{-1}(E) \in \mathcal{A} [/mm] für jedes E [mm] \in \mathcal{E} [/mm]

So, ist nun X = Y = [mm] \IR [/mm] und  [mm] \mathcal{A}=\mathcal{B} [/mm] = Borelsch [mm] \sigma [/mm] - Algebra auf  [mm] \IR, [/mm] so wähle [mm] \mathcal{E} [/mm] = System der in [mm] \IR [/mm] offenen Mengen.

Mit (*) siehst Du dann sofort: ist $f:X [mm] \to [/mm] Y$ stetig, so ist f messbar.

FRED





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]