matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheoriemengenfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - mengenfunktionen
mengenfunktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mengenfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Do 25.12.2008
Autor: mini111

Hallo,

Ich versuche gerade nachzuvollziehen,wie man hier drauf kommt:
[mm] \lambda^4(M) [/mm] für [mm] M:=\bigcup_{n=1}^{\infty} B^\infty (x_n,1/\wurzel{n}) [/mm] mit [mm] x_n:=(2n,0,0,n), [/mm] n [mm] \in \IN,Ergebnis: \lambda^4(M)=8/3*\pi^2. [/mm]
Ich hab mal so angefangen:
für [mm] n=1:(\vektor{2 \\ 0 \\ 0 \\ 1},1) [/mm]
n=2 [mm] :(\vektor{4 \\ 0 \\ 0 \\ 2},1/\wurzel{2}) [/mm]
n=3 [mm] (\vektor{6 \\ 0 \\ 0 \\ 3},1/\wurzel{3}) [/mm]
n=4 [mm] (\vektor{8 \\ 0 \\ 0 \\ 4},1/\wurzel{4}) [/mm]
wie wende ich jetzt hierauf,:  [mm] \lambda^n(]a,b]):=\produkt_{j=1}^{n}(b_j-a_j) [/mm] an?irgendwie verstehe ich das ab hier nicht mehr.wär froh wenn mir da jemand weiter helfen könnte.

gruß und frohe weihnachten




        
Bezug
mengenfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 25.12.2008
Autor: pelzig

Diese [mm] $B^\infty$ [/mm] sind Kugeln bzgl. der [mm] $\infty$-Norm, [/mm] d.h. Würfel oder wie? Dann überleg dir doch als nächstes Mal ob diese Würfel alle disjunkt sind oder nicht...

Gruß, Robert

Bezug
                
Bezug
mengenfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Do 25.12.2008
Autor: mini111

hallo pelzig,

Tut mir leid aber ich versteh ich überhaupt nicht was du meinst :(

gruß

Bezug
                        
Bezug
mengenfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 25.12.2008
Autor: Merle23

Er wollte erstmal wissen was überhaupt [mm]B^\infty (x_n,1/\wurzel{n})[/mm] sein soll.

Sowas musst du dazu schreiben, denn sonst kann dir gar keiner antworten.

Dann hat er geraten was es vielleicht sein könnte und hat dir bzgl. dessen einen Tip gegeben in welche Richtung du dann weiterdenken solltest.

Bezug
                                
Bezug
mengenfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Fr 26.12.2008
Autor: mini111

hallo,

nur leider weiß ich selbst nicht was dieses [mm] B^\infty (x_n,1/\wurzel{n}) [/mm] heißen soll!Das stand nicht in der Aufgabe dabei und im skript habe ich auch nichts dazu gefunden!ja und,den tipp von pelzig habe ich leider nicht verstanden...

gruß



Bezug
                                        
Bezug
mengenfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Fr 26.12.2008
Autor: pelzig

Der erste Schritt beim Lösen einer Aufgabe ist doch ganz klar der, dass man sich erstmal die Definitionen der beteiligten Objekte ins Gedächtnis ruft. Wie willst du denn die Aufgabe Lösen, wenn du nicht weißt was [mm] $B^\infty$ [/mm] bedeuten soll?

Setzte [mm] M_n:=B^\infty(x_n,1/\sqrt{n}), [/mm] dann ist [mm] $M=\bigcup_{k=1}^\infty M_k$. [/mm] Wenn du gezeigt hast, dass die [mm] M_k [/mm] paarweise disjunkt sind, d.h. [mm] $k\ne j\Rightarrow M_k\cap M_j=\emptyset$, [/mm] dann kannst du die Eigenschaft nutzen, dass das Lebesgue-Maß ein Maß ist, denn dann ist [mm] $$\lambda^4(M)=\lambda^4\left(\bigcup_{k=1}^\inty M_k\right)=\sum_{k=1}^\infty\lambda^4(M_k)$$ [/mm] Wenn die [mm] M_k [/mm] wie ich vermutet habe Bälle bezüglich der [mm] $\infty$-Norm [/mm] sind, also in Wirklichkeit Würfel, dann ist [mm] $\lambda^4(M_k)=(2/\sqrt{k})^4=16/k^2$ [/mm] und damit wäre [mm] $\lambda^4(M)=\frac{8\pi^2}{3}$... [/mm]

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]