mehrdimensionale Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:21 So 12.05.2013 | Autor: | marmik |
Aufgabe | Berechnen Sie die folgenden Grenzwerte
i) [mm] \lim_{(x,y) \to (0,0)} \frac{xy}{\sqrt{xy+1}-1}
[/mm]
ii) [mm] \lim_{(x,y) \to (0,0)} \frac{\sqrt{x^2+y^2+1}-1}{x^2+y^2} [/mm] |
Hallo,
ich weiß bei den Aufgaben nicht wirklich wie ich vorgehen soll.
Ich dachte eigentlich, dass ich mir jede Komponentenfunktion angucke, davon den Grenzwert bestimme und dann wäre es das, aber ich bin mir irgendwie nicht sicher.
Bei i) habe ich damit:
[mm] \lim_{x \to 0} \frac{x}{\sqrt{x+1}-1}=2 [/mm]
und für die andere Komponente analog.
Aber das kann ja nicht sein das ich einfach das y oder das x weglasse oder etwa doch?
Danke schonmal für jede Hilfe!
marmik
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:39 So 12.05.2013 | Autor: | Marcel |
Hallo,
> Berechnen Sie die folgenden Grenzwerte
> i) [mm]\lim_{(x,y) \to (0,0)} \frac{xy}{\sqrt{xy+1}-1}[/mm]
>
> ii) [mm]\lim_{(x,y) \to (0,0)} \frac{\sqrt{x^2+y^2+1}-1}{x^2+y^2}[/mm]
>
> Hallo,
> ich weiß bei den Aufgaben nicht wirklich wie ich vorgehen
> soll.
> Ich dachte eigentlich, dass ich mir jede
> Komponentenfunktion angucke, davon den Grenzwert bestimme
> und dann wäre es das, aber ich bin mir irgendwie nicht
> sicher.
> Bei i) habe ich damit:
> [mm]\lim_{x \to 0} \frac{x}{\sqrt{x+1}-1}=2[/mm]
> und für die andere Komponente analog.
> Aber das kann ja nicht sein das ich einfach das y oder das
> x weglasse oder etwa doch?
wie willst Du das denn begründen? (Bei (i) würdest Du anscheinend einfach
[mm] $y=1\,$ [/mm] setzen - das ist schlecht, wenn $y [mm] \to [/mm] 0$ streben soll...)
Wie wär's denn bei (i) mit
[mm] $$\frac{xy}{\sqrt{xy+1}-1}=\frac{xy*(\sqrt{xy+1}\;+\;1)}{xy}$$
[/mm]
und bei (ii) mit
$$ [mm] \frac{\sqrt{x^2+y^2+1}-1}{x^2+y^2}= \frac{x^2+y^2}{(x^2+y^2)*(\sqrt{x^2+y^2+1}\;+\;1)}\,.$$
[/mm]
P.S. Anstatt [mm] "$\lim_{(x,y) \to (0,0)}...$" [/mm] kannst Du auch [mm] $\lim_{n \to \infty}...$ [/mm] schreiben, wobei Du von
[mm] $(x_n)_n$ [/mm] und [mm] $(y_n)_n$ [/mm] nur annimmst (nicht mehr und nicht weniger), dass stets [mm] $(x_n,y_n) \not=(0,0)$ [/mm] und dass
[mm] $$\lim_{n \to \infty}x_n=\lim_{n \to \infty}y_n=0\,.$$
[/mm]
Bekanntlich gilt nämlich, wenn [mm] $f\,$ [/mm] eine Funktion zwischen metrischen
Räumen ist: [mm] $\lim_{x \to x_0}f(x)$ [/mm] existiert GENAU DANN, wenn für JEDE Folge
[mm] $(x_n)_n$ [/mm] mit [mm] $x_0 \not=x_n \to x_0$ [/mm] gilt, dass...
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:13 Mo 13.05.2013 | Autor: | marmik |
Danke für die Antwort,
Wenn ich dann in i) und ii) die Funktionen so umstelle, wie du sie geschrieben hast, kann ich dann auch einfach (x,y) gegen (0,0) laufen lassen und erhalte dann für i) den Grenzwert 2 und für ii) [mm] \frac{1}{2} [/mm] ?
Das mit den Folgen, die man stattdessen schreiben kann, habe ich nicht ganz verstanden. Kannst du mir für i) vielleicht eine Beispielfolge nennen, die ich nehmen kann?
Gruß
Marmik
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:54 Mo 13.05.2013 | Autor: | fred97 |
> Danke für die Antwort,
> Wenn ich dann in i) und ii) die Funktionen so umstelle,
> wie du sie geschrieben hast, kann ich dann auch einfach
> (x,y) gegen (0,0) laufen lassen und erhalte dann für i)
> den Grenzwert 2 und für ii) [mm]\frac{1}{2}[/mm] ?
Ja
> Das mit den Folgen, die man stattdessen schreiben kann,
> habe ich nicht ganz verstanden.
Das ist das Folgenkriterium für den Grenzwert.
FRED
> Kannst du mir für i)
> vielleicht eine Beispielfolge nennen, die ich nehmen kann?
> Gruß
> Marmik
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:52 Mo 13.05.2013 | Autor: | Marcel |
Hallo,
> Danke für die Antwort,
> Wenn ich dann in i) und ii) die Funktionen so umstelle,
> wie du sie geschrieben hast, kann ich dann auch einfach
> (x,y) gegen (0,0) laufen lassen und erhalte dann für i)
> den Grenzwert 2 und für ii) [mm]\frac{1}{2}[/mm] ?
jupp: Es gilt doch $(x,y) [mm] \to [/mm] (0,0) [mm] \iff [/mm] x [mm] \to [/mm] 0 [mm] \text{ und }y \to 0\,.$ [/mm] Daher folgt auch
$xy [mm] \to [/mm] 0$ und auch [mm] $x^2 \to [/mm] 0$ und auch [mm] $y^2 \to [/mm] 0$ etc. pp. bei $(x,y) [mm] \to (0,0)\,.$
[/mm]
> Das mit den Folgen, die man stattdessen schreiben kann,
> habe ich nicht ganz verstanden. Kannst du mir für i)
> vielleicht eine Beispielfolge nennen, die ich nehmen kann?
Das ist KEINE Beispielfolge, das "sind alles Folgen mit gewissen Eigenschaften":
i) $ [mm] \lim_{(x,y) \to (0,0)} \frac{xy}{\sqrt{xy+1}-1} [/mm] $
ist das Gleiche wie
[mm] $$\lim_{n \to \infty} \frac{x_ny_n}{\sqrt{x_ny_n+1}-1}\,,$$
[/mm]
wobei [mm] $((x_n,y_n))_n$ [/mm] IRGENDEINE Folge sei, die mit nichts weiter ausgestattet
sei als der Eigenschaft $(0,0) [mm] \not=(x_n,y_n) \to (0,0)\,.$ [/mm] (Du spezialisierst die NICHT
weiter oder machst sie gar konkreter... das könntest Du zwar machen, aber
damit hättest Du dann nur eine Aussage: "Wenn der Grenzwert denn
überhaupt existiert, dann kommt für ihn nur ... in Frage!")
Gruß,
Marcel
|
|
|
|