matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische Geometriemaximal homogenes Ideal
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebraische Geometrie" - maximal homogenes Ideal
maximal homogenes Ideal < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximal homogenes Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 02.12.2009
Autor: sTuDi_iDuTs

Hallo zusammen,
in der Vorlesung haben wir folgende Aussage gehabt:
Sei I ein maximales homogenes Ideal mit V(I) [mm] $\not= \emptyset$. [/mm]
Dann kann man  das Ideal darstellen als I = [mm] $<\{c_i*X_j - c_j*X_i\}>$ [/mm] wobei $0 [mm] \le [/mm] i < j [mm] \le [/mm] n$ und [mm] c_0,...,c_n $\in \IC$ [/mm]

Irgendwie ist mir das nicht so einleuchtend!
Kann mir das jemand erklären?

        
Bezug
maximal homogenes Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mi 02.12.2009
Autor: felixf

Hallo!

> Hallo zusammen,
> in der Vorlesung haben wir folgende Aussage gehabt:
>  Sei I ein maximales homogenes Ideal mit V(I) [mm]\not= \emptyset[/mm].
>  
> Dann kann man  das Ideal darstellen als I = [mm]<\{c_i*X_j - c_j*X_i\}>[/mm]
> wobei [mm]0 \le i < j \le n[/mm] und [mm]c_0,...,c_n[/mm]  [mm]\in \IC[/mm]

Das ist aber gar nicht gut aufgeschrieben. Schreib mal lieber $I = [mm] \langle \{ c_i X_j - c_j X_i \mi 0 \le i < j \le n \} \rangle$ [/mm] mit [mm] $c_0, \dots, c_n \in \IC$. [/mm]

> Irgendwie ist mir das nicht so einleuchtend!
>  Kann mir das jemand erklären?

Das kannst du genauso mit dem Nullstellensatz beweisen. Zeige zuerst, dass Ideale der Form [mm] $\langle \{ c_i X_j - c_j X_i \mi 0 \le i < j \le n \} \rangle$ [/mm] homogen sind. Zeige dann, dass jedes andere homogene Ideal, welches den Punkt [mm] $[c_0 [/mm] : [mm] \dots [/mm] : [mm] c_n]$ [/mm] als Nullstelle hat, in diesem Ideal enthalten ist.

Beachte, dass (perfekte) homogene Ideale genau die Nullstellenmengen von Idealen im [mm] $\IC^{n+1}$ [/mm] sind, die zu einem Punkt auch die Ursprungsgerade durch diesen Punkt enthalten. (Die also sternfoermig um 0 herum sind.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]