matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebramatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - matrizen
matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Mi 19.12.2007
Autor: damien23

Aufgabe
A sei eine m x n Matrix, mit m<n. Zeige Rang A =m genau dann, wenn es eine m x m Untermatrix von A gibt, deren determinante [mm] \not= [/mm] 0 ist.

Halllo.

Ich hoffe ihr könnt mir helfen. Es fehlt mal wieder der letzte Schluss zum Verständnis dieser Aufgabe.

Der Rang von A kann ja maximal so groß sein, wie es linear unabhängige Zeilen gibt. Wenn ich jetzt davon ausgehe, dass die m x m Untermatrix der Matrix A ebenfalls aus nur lin. unabh. Zeilen besteht. Dann ist die Untermatrix invertierbar und hat den Rang m. Da m ungleich Null ist, ist auch die
det (Untermatrix [mm] )\not= [/mm] 0. Daraus würde ich dann schließen, dass der Rang von A = m ist.

Damit ist es doch gezeigt, oder?

MfG
Damien

        
Bezug
matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mi 19.12.2007
Autor: Kroni

Hi,

m.E. hast du nur eine Richtung gezeigt. Es steht ja in der Behauptung "genau dann, wenn", was bedeutet, dass du beide Richtungen zeigen musst.  Die andere Richtung ist aber auch nicht viel schwerer.

LG

Kroni

Bezug
                
Bezug
matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:34 Do 20.12.2007
Autor: damien23

danke für die hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]