matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenlokale Extrema bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema bestimmen
lokale Extrema bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mi 30.07.2014
Autor: rollroll

Aufgabe
Bestimme die lokalen Extrema der Funktion f: [mm] IR^2-->IR, [/mm]
[mm] f(x,y)=x^2+y^2-ln(1+2x^2+3y^2). [/mm]

Hallo!

Ich habe grad [mm] f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}. [/mm]

Und Hess [mm] f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}} [/mm]

Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse Matrix liefert dies ein isoliertes lokales Maximum.

Gibt es noch weitere kritische Punkte? Ich habe immer Probleme das GLS, das entsteht, wenn ich den grad =0 setze zu lösen. Gibt es da eine Strategie?

        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Mi 30.07.2014
Autor: fred97


> Bestimme die lokalen Extrema der Funktion f: [mm]IR^2-->IR,[/mm]
>  [mm]f(x,y)=x^2+y^2-ln(1+2x^2+3y^2).[/mm]
>  Hallo!
>  
> Ich habe grad [mm]f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}.[/mm]
>  
> Und Hess [mm]f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}}[/mm]
>  
> Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall
> als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse
> Matrix liefert dies ein isoliertes lokales Maximum.

Das stimmt.


>
> Gibt es noch weitere kritische Punkte?

Ja, es gibt noch welche mit x [mm] \ne [/mm] 0 und y=0. Und welche mit x=0 und y [mm] \ne [/mm] 0.


> Ich habe immer
> Probleme das GLS, das entsteht, wenn ich den grad =0 setze
> zu lösen. Gibt es da eine Strategie?

Nein, eine Strategie gibts da nicht.

FRED

Bezug
                
Bezug
lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mi 30.07.2014
Autor: rollroll

Dann erhalte ich noch 4 weitere kritische Punkte [mm] (\wurzel{1/2}, [/mm] 0),  [mm] (-\wurzel{1/2}, [/mm] 0), (0, [mm] \wurzel{2/3}), [/mm] (0, [mm] -\wurzel{2/3}). [/mm]

Bezug
                        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 30.07.2014
Autor: fred97


> Dann erhalte ich noch 4 weitere kritische Punkte
> [mm](\wurzel{1/2},[/mm] 0),  [mm](-\wurzel{1/2},[/mm] 0), (0, [mm]\wurzel{2/3}),[/mm]
> (0, [mm]-\wurzel{2/3}).[/mm]  

Ja

FRED


Bezug
        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 30.07.2014
Autor: rmix22


> Bestimme die lokalen Extrema der Funktion f: [mm]IR^2-->IR,[/mm]
>  [mm]f(x,y)=x^2+y^2-ln(1+2x^2+3y^2).[/mm]
>  Hallo!
>  
> Ich habe grad [mm]f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}.[/mm]
>  
> Und Hess [mm]f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}}[/mm]
>  
> Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall
> als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse
> Matrix liefert dies ein isoliertes lokales Maximum.
>
> Gibt es noch weitere kritische Punkte? Ich habe immer

Ja, es gibt noch vier weitere, wie auch fred97 schon angemerkt hat.

> Probleme das GLS, das entsteht, wenn ich den grad =0 setze
> zu lösen. Gibt es da eine Strategie?

Naja, konsequente Fallunterscheidung und damit keine möglichen Lösungen des Gleichungssystems unter den Tisch fallen lassen.

Wenn du mit [mm] $f_x(x,y)=0$ [/mm] beginnst, dann hast du ja sofort zwei Fälle, die du betrachten musst.
Fall 1: $x=0$
Fall [mm] 2:$2*x^2+3*y^2-1=0$ [/mm]

Fall 1: $x=0$ einsetzen in [mm] $f_y(0,y)=$ [/mm] liefert sofort wieder zwei Unterfälle, nämlich

Fall 1.1: $y=0$
Fall 1.2: [mm] $3*y^2-2=0$ [/mm]

und Fall 1.2 führt auf weitere zwei Fälle, und zwar
Fall 1.2.1: [mm] $y=+\frac{\wurzel{6}}{3}$ [/mm]
Fall 1.2.2: [mm] $y=-\frac{\wurzel{6}}{3}$ [/mm]

Und jetzt fehlt noch die Behandlung von
Fall 2: [mm] $2*x^2 +3*y^2-1=0\ \Rightarrow\ x^2=\frac{1-3y^2}{2}\ [/mm] \ [mm] (\*)$ [/mm]
einsetzen in [mm] $f_y(x,y)=0$ [/mm] führt diesmal direkt und ausschließlich auf $y=0$.
Einsetzen in [mm] $(\*)$ [/mm] führt auf zwei weitere kritische Punkte, bei dennen sich später heraustellen wird, dass sie keine lokalen Extrema sind.

Du siehst, die "Strategie" ist konsequentes Anwenden einfacher Termumformungen und Beachten aller Möglichkeiten ("Produkt-Null-Satz").

Gruß RMix




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]