matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenlokale Extrema, Definitheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema, Definitheit
lokale Extrema, Definitheit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema, Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Mi 02.06.2010
Autor: theghostdog

Aufgabe
Gegeben sei die Funktion $f: D [mm] \rightarrow \IR$ [/mm] mit a > 0,
[mm] $D=\{(x,y) \in \IR^2 | x > 0 \}$, [/mm]

$f(x,y) = (ln [mm] x)a^y$ [/mm]

a) Ist der Definitionsbereich $D$ eine abgeschlossene Menge?
b) Besitzt die Funktion lokale Extrema?
c) In welchen Punkten $(x,y) [mm] \in [/mm] D$ ist die Hesse Matrix [mm] H_f [/mm] negativ definit?

Hallo zusammen,

auch hier bräuchte ich eure Hilfe. Schon einmal recht herzlichen Dank!

zu a)

So wie ich es verstehe, ist eine Menge abgeschlossen, wenn ihr Komplement nicht abgeschlossen ist, also die Ränder nicht enthalten sind. Heißt:
D abgeschlossen [mm] $\Leftrightarrow \IR^2 \setminus [/mm] D$ nicht abgeschlossen

Wenn ich nun bei Wiki nachlese, steht da, dass für jeden Punkt x [mm] \in [/mm] D ein Radius r existieren muß, welcher sozusagen alle meine Elemente in D umfasst.

Das Komplement von D ist ja: [mm] $\overline{D}=\{(x,y) \in \IR^2 | x \leq 0 \}$. [/mm]

Nun versteh ich aber nicht, wie dass mir für den Radius r helfen soll. Wenn ich das Intervall für x [mm] \in [/mm] D betrachte, bekomme ich ja [mm] (0,\infty), [/mm] ist also nicht abgeschlossen, und damit D auch nicht?

zu b)

[mm] $f_x [/mm] = [mm] \frac{a^y}{x}$ [/mm]

[mm] $f_y [/mm] = [mm] a^y [/mm] * ln a * ln x$

[mm] $f_{xx} [/mm] = [mm] -\frac{a^y}{x^2}$ [/mm]

[mm] $f_{xy} [/mm] = [mm] \frac{a^y*ln a}{x}$ [/mm]


aus [mm] f_y=0 [/mm] bekomme ich x = 1, aber wie löse ich [mm] f_x= a^y/x [/mm] =0 ???

Vielen Dank.

        
Bezug
lokale Extrema, Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 02.06.2010
Autor: leduart

Hallo
"Wenn ich nun bei Wiki nachlese, steht da, dass für jeden Punkt x $ [mm] \in [/mm] $ D ein Radius r existieren muß, welcher sozusagen alle meine Elemente in D umfasst. "
Das steht sicher nicht in wiki.
0 liegt nicht in D gibt es irgendeine Umgebung von 0 die auch nicht in D liegt? Dann lies noch mal was abg. ist.
Was ist der Rand deiner Menge? gehört er dazu?
2. kann [mm] a^y=0 [/mm] sein? gibts also ein lokales Extr?
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]