matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungen(lok.) Lipschitz-Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - (lok.) Lipschitz-Stetigkeit
(lok.) Lipschitz-Stetigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(lok.) Lipschitz-Stetigkeit: Tipp?
Status: (Frage) beantwortet Status 
Datum: 12:33 Mo 12.01.2009
Autor: GEWE

Aufgabe
Zeigen Sie, dass die Funktion: [mm] f(x,y)=1+y^{6} [/mm] einer lokalen Lipschitz-Bedingung genügt! (...so dass aus dem Satz von Picard-Lindelöf die Eindeutigkeit des AWPs: y'=f(x,y) mit y(0)=0 folgt.)

Beim Nachweis der LP-Bedingung weiß ich an folgender Stelle nicht weiter, vllt. hat jemand einen Tipp:

Man setzt wie üblich an:
[mm] |f(x,y_{1}) [/mm] - [mm] f(x,y_{2}|=|(y_{1})^6 [/mm] - [mm] (y_{2})^6|=|((y_{1})^3 [/mm] - [mm] (y_{2})^3)*((y_{1})^3 [/mm] + [mm] (y_{2})^3)| [/mm]

Man kann nun annehmen, dass ein R>0 exist. mit [mm] |y_{1}|, |y_{2}|\le [/mm] R...

Aber wie kriegt man nun konkret die Abschätzung: [mm] |((y_{1})^3 [/mm] - [mm] (y_{2})^3)|\le |(y_{1} [/mm] - [mm] (y_{2})| [/mm] hin, so dass man die LP-Bedingung formal nachweisen kann?

Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
(lok.) Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 12.01.2009
Autor: generation...x

Versuchs mal mit Polynomdivision:

[mm](y_1^3 - y_2^3) : (y_1 - y_2) = [/mm] ?

Nach meiner Rechnung geht das auf...

Bezug
                
Bezug
(lok.) Lipschitz-Stetigkeit: Richtig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mo 12.01.2009
Autor: GEWE

Danke für den Tipp! (Polynomdivision)

Wenn ich an der entsprechenden Stelle ansetze, erhalte ich:

[mm] |f(x,y_{1}) [/mm] - [mm] f(x,y_{2})|=... [/mm]

[mm] =|(y_{1}^3-y_{1}^3)*(y_{1}^3+y_{1}^3)| [/mm] (Polynomdivision!)

[mm] =|(y_{1}-y_{2})*(y_{1}^2+y_{1}y_{2}+y_{2}^2)*(y_{1}^3+y_{2}^3)| [/mm]

[mm] \le|y_{1}-y_{2}|*2R^2*2R^3 [/mm]

[mm] =|y_{1}-y_{2}|*4R^5 [/mm]

wählt man nun [mm] L=4R^5, [/mm] dann ist die LP-Bedingung (lokal) erfüllt (und nach Picard-Lindelöf ist das gegebene AWP eindeutig lösbar).

Ist das so korrekt?

Bezug
                        
Bezug
(lok.) Lipschitz-Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Di 13.01.2009
Autor: generation...x

Sieht gut aus. Allerdings würde ich

[mm]|(y_{1}^2+y_{1}y_{2}+y_{2}^2)| \leq 3R^2[/mm]

abschätzen, so dass im Ergebnis dann 6 statt 4 steht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]