matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemelösbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - lösbarkeit
lösbarkeit < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Fr 05.09.2008
Autor: vivo

Hallo,

ich versuche gerade die Lösbarkeitskriterien eines LGS mit [mm] A^{mxn} [/mm] zu sammeln:

- Rang der Matrix = Rang der erweiterten Matrix
- die rechte Seite b ist eine Linearkombination der Spaltenvektoren
- b [mm] \in [/mm] (Kern  [mm] A^t)^{\perp} [/mm]

tja mehr wüsste ich jetzt leider nicht ... was wichtiges übersehen?

und dann eindeutig lösbar falls:

- Kern A = [mm] \{0} [/mm] bzw.
- keine frei wählbaren komponenten

danke für Ergänzungen!

gruß

        
Bezug
lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 05.09.2008
Autor: Merle23

edit: Hier stand Murks.
Bezug
                
Bezug
lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 05.09.2008
Autor: vivo

deine beispiel ist doch nicht lösbar, oder ?????????

da eben der Rang der Matrix [mm] \not= [/mm] Rang der erweiterten Matrix ist.

inwiefern steht das im wiederspruch zu meiner aussage?



Bezug
                        
Bezug
lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Fr 05.09.2008
Autor: schachuzipus

Hallo vivo,

> deine beispiel ist doch nicht lösbar, oder ????????? [ok]
>  
> da eben der Rang der Matrix [mm]\not=[/mm] Rang der erweiterten
> Matrix ist.

[ok] ganz recht

>  
> inwiefern steht das im wiederspruch zu meiner aussage?
>  

Die obige Antwort ist falsch, ein LGS $Ax=b$ ist lösbar [mm] $\gdw [/mm] rg(A)=rg(A|b)$


LG

schachuzipus



Bezug
                                
Bezug
lösbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Fr 05.09.2008
Autor: vivo

ok, danke ...

jetzt hab ich aber leider noch keine antwort auf mein "ausgangsfrage" .-)

vielen dank für antworten

Bezug
                                        
Bezug
lösbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 So 07.09.2008
Autor: angela.h.b.

Hallo,

zur Lösbarkeit von Ax=b   mit [mm] A\in \IR_{mxn} [/mm] und [mm] b\in \IR^m: [/mm]


Das Gleichungsystem ist lösbar
<==> [mm] b\in [/mm] Bild A (Linearkombintion der Spalten)
<==> Rang(A,b)=Rang(A)


Ax=b ist universell lösbar, dh. für jedes b lösbar
<==>Rang(A)=m
<==> A beschreibt eine surjektive Abbildung

Ax=b hat höchstens (!)  eine Lösung
<==> Rang A=n
<==> A beschreibt eine injektive Abbildung

Ax=b hat genau eine Lösung
<==> Rang A=m=n
<==> A beschreibt eine bijektive Abbildung
<==> A ist quadratisch und invertierbar

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]