matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationln(1/x) ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - ln(1/x) ableiten
ln(1/x) ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ln(1/x) ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:37 Fr 02.07.2010
Autor: steem

Aufgabe
Gesucht ist die Ableitung der Funktion [mm] ln(\bruch{1}{x}) [/mm]

Hier bin ich etwas verwirrt, weil normalerweise gilt doch die Kettenregel, also innere Ableitung mal äußere Ableitung. Wenn ich die anwende bekomme ich [mm] -\bruch{1}{x^3} [/mm] raus. Mapple sagt aber, dass die Ableitung von [mm] f(x)'=ln(\bruch{1}{x})=- \bruch{1}{x} [/mm] ist.

Wie kommt man auf dieses Ergebnis?

        
Bezug
ln(1/x) ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 07:47 Fr 02.07.2010
Autor: fred97


> Gesucht ist die Ableitung der Funktion [mm]ln(\bruch{1}{x})[/mm]
>  Hier bin ich etwas verwirrt, weil normalerweise gilt doch
> die Kettenregel, also innere Ableitung mal äußere
> Ableitung. Wenn ich die anwende bekomme ich [mm]-\bruch{1}{x^3}[/mm]
> raus.

Zeig Deine Rechnungen !!!

1. Mit der Kettenregel: $f'(x) = [mm] \bruch{1}{1/x}*(1/x)'= [/mm] x* [mm] \bruch{-1}{x^2}= \bruch{-1}{x}$ [/mm]

2. Mit den Logarithmusgesetzen: $f(x)= ln(1)-ln(x) = -ln(x)$, also: $f'(x) = [mm] \bruch{-1}{x}$ [/mm]




FRED

> Mapple sagt aber, dass die Ableitung von
> [mm]f(x)'=ln(\bruch{1}{x})=- \bruch{1}{x}[/mm] ist.
>
> Wie kommt man auf dieses Ergebnis?  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]