matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numeriklipschitz-bedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - lipschitz-bedingung
lipschitz-bedingung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lipschitz-bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Do 22.01.2015
Autor: mimo1

Aufgabe
Sei [mm] D\subset \IR^d [/mm] offen und konvex, f:D [mm] \rightarrow \IR^d [/mm] stetig diffbar. Zeige: Für [mm] y,z\inD [/mm] gilt

(1) [mm] \langle f(y)-f(z),y-z\rangle \le l\cdot ||y-z||^2 [/mm] mit [mm] l=\underbrace{sup}_{u\in D}\mu(f'(u)) [/mm]

(2) ||f(y)-f(z)|| [mm] \le \cdot [/mm] ||y-z|| mit [mm] L=\underbrace{sup}_{u\inD}||f'(u)||, [/mm]

wobei für euklidische Norm und Skalarprodukt und reelle [mm] d\times [/mm] d-Matrizen A
[mm] \mu(A)=\underbrace{sup}_{v\not=0}\bruch{\langle Av,v\rangle}{||v||^2}=\mbox{ größte EIgenwert von} \bruch{1}{2}(A+A^T), [/mm]

[mm] ||A||=\underbrace{sup}_{v\not=0}\bruch{Av}{v}=\wurzel{\mbox{ größte Eigenwert von A^T A}} [/mm]

hallo,

ich brauche dringend hilfe bei diese aufgabe und hoffe ihr könnt mir dabei helfen.

zu(1)
[mm] \langle f(y)-f(z),y-z\rangle =(y-z)\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}=(y-z)^2\integral_{0}^{1}{f'(z+t(y-z)) dt}=(y-z)^2[\bruch{1}{y-z}f(z+t(y-z)]^1_0 [/mm] =(y-z)(f(y)-f(z))

und wenn ich davon die norm nehmen

d.h. [mm] ||y-z||\cdot||f(y)-f(z)|| [/mm] da mit lipschitz d.h. für [mm] ||f(y)-f(z)||\le l\cdot||y-z|| [/mm] habe dann [mm] ||y-z||\cdot||f(y)-f(z)||\le ||y-z||\cdot l\cdot||y-z||=l\cdot||y-z||^2 [/mm]

also zu (2) habe ich:

[mm] ||f(y)-f(z)||=||\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}||=||(y-z) \integral_{0}^{1}{f'(z+t(y-z))dt}||=||y-z||\cdot||\integral_{0}^{1}{f'(z+t(y-z))dt}||\le ||y-z||\cdot \integral_{0}^{1}{||f'(z+t(y-z))||dt} [/mm] (da f stetig diffbar)

leider komme ich nicht weiter.

ist es richtig was ich gemacht habe bis jetzt? ich bin für jeden tipp dankbar

        
Bezug
lipschitz-bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Fr 23.01.2015
Autor: fred97


> Sei [mm]D\subset \IR^d[/mm] offen und konvex, f:D [mm]\rightarrow \IR^d[/mm]
> stetig diffbar. Zeige: Für [mm]y,z\inD[/mm] gilt
>  
> (1) [mm]\langle f(y)-f(z),y-z\rangle \le l\cdot ||y-z||^2[/mm] mit
> [mm]l=\underbrace{sup}_{u\in D}\mu(f'(u))[/mm]
>  
> (2) ||f(y)-f(z)|| [mm]\le \cdot[/mm] ||y-z|| mit
> [mm]L=\underbrace{sup}_{u\inD}||f'(u)||,[/mm]
>  
> wobei für euklidische Norm und Skalarprodukt und reelle
> [mm]d\times[/mm] d-Matrizen A
>  [mm]\mu(A)=\underbrace{sup}_{v\not=0}\bruch{\langle Av,v\rangle}{||v||^2}=\mbox{ größte EIgenwert von} \bruch{1}{2}(A+A^T),[/mm]
>  
> [mm]||A||=\underbrace{sup}_{v\not=0}\bruch{Av}{v}=\wurzel{\mbox{ größte Eigenwert von A^T A}}[/mm]
>  
> hallo,
>  
> ich brauche dringend hilfe bei diese aufgabe und hoffe ihr
> könnt mir dabei helfen.
>  
> zu(1)
>  [mm]\langle f(y)-f(z),y-z\rangle =(y-z)\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}=(y-z)^2\integral_{0}^{1}{f'(z+t(y-z)) dt}=(y-z)^2[\bruch{1}{y-z}f(z+t(y-z)]^1_0[/mm]
> =(y-z)(f(y)-f(z))


So wird das schon mal nix !  y und z sind Elemente des [mm] \IR^d, [/mm] also Vektoren. Dann ist auch y-z ein Vektor. Durch diesen Vektor teilst Du !

Dan kommt auch noch das Quadrat [mm] (y-z)^2 [/mm] ins Spiel ....

FRED

>  
> und wenn ich davon die norm nehmen
>  
> d.h. [mm]||y-z||\cdot||f(y)-f(z)||[/mm] da mit lipschitz d.h. für
> [mm]||f(y)-f(z)||\le l\cdot||y-z||[/mm] habe dann
> [mm]||y-z||\cdot||f(y)-f(z)||\le ||y-z||\cdot l\cdot||y-z||=l\cdot||y-z||^2[/mm]
>  
> also zu (2) habe ich:
>  
> [mm]||f(y)-f(z)||=||\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}||=||(y-z) \integral_{0}^{1}{f'(z+t(y-z))dt}||=||y-z||\cdot||\integral_{0}^{1}{f'(z+t(y-z))dt}||\le ||y-z||\cdot \integral_{0}^{1}{||f'(z+t(y-z))||dt}[/mm]
> (da f stetig diffbar)
>  
> leider komme ich nicht weiter.
>  
> ist es richtig was ich gemacht habe bis jetzt? ich bin für
> jeden tipp dankbar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]