matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemelinearkombinationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - linearkombinationen
linearkombinationen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linearkombinationen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 11.05.2009
Autor: Fawkes

Aufgabe
Man zeige, dass jeder Spaltenvektor u der Länge n eine Linearkombination der Einheitsvektoren [mm] (e1)^n, [/mm] ..., [mm] (en)^n [/mm] ist. Sind die Koeffizienten eindeutig durch u bestimmt?

hallo erstmal :)
also zu der aufgabe hab ich mir erstmal folgendes überlegt und zwar ist ja zb e1= [mm] (1,0,...,0)^t [/mm] und das ganze n mal und für die anderen einheitsvektoren eben [mm] e2=(0,1,0,...,0)^t [/mm] und so weiter. wenn man das jetzt in ein lineares GLS einfügt bekommt man doch eigentlich x1=u1 und x2=u2 und ... und xn=un und damit sind ja die koeffizienten eindeutig bestimmt und jeder spaltenvektor u der länge n eine linearkombination. da ich das jetzt aber nen bisschen simpel finde weiß ich nich ob das so reicht und die aufgabe damit wirklich richtig ist. kann mir da zufällig jemand weiter helfen? danke schon mal im vorhinein :) schöne grüße fawkes

        
Bezug
linearkombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 12.05.2009
Autor: angela.h.b.


> Man zeige, dass jeder Spaltenvektor u der Länge n eine
> Linearkombination der Einheitsvektoren [mm](e1)^n,[/mm] ..., [mm](en)^n[/mm]
> ist. Sind die Koeffizienten eindeutig durch u bestimmt?
>  hallo erstmal :)
> also zu der aufgabe hab ich mir erstmal folgendes überlegt
> und zwar ist ja zb e1= [mm](1,0,...,0)^t[/mm] und das ganze n mal
> und für die anderen einheitsvektoren eben
> [mm]e2=(0,1,0,...,0)^t[/mm] und so weiter. wenn man das jetzt in ein
> lineares GLS einfügt bekommt man doch eigentlich x1=u1 und
> x2=u2 und ... und xn=un und damit sind ja die koeffizienten
> eindeutig bestimmt und jeder spaltenvektor u der länge n
> eine linearkombination. da ich das jetzt aber nen bisschen
> simpel finde weiß ich nich ob das so reicht und die aufgabe
> damit wirklich richtig ist. kann mir da zufällig jemand
> weiter helfen? danke schon mal im vorhinein :) schöne grüße
> fawkes

Hallo,

die Aufgabe ist wirklich nicht schwer, und Du hast das richtig kapiert.

Ob Du es wirklich richtig gemacht hast, kann man leichter beurteilen, wenn man die Rechnung sieht, statt daß man 'ne Rechenstory liest.

Sei [mm] u:=\vektor{u_1\\\vdots\\u_n}. [/mm]

Zur Existenz:

Es ist  [mm] \vektor{u_1\\\vdots\\u_n}= u_1e_1+ ...+u_ne_n, [/mm] und damit ist gezeigt, daß man ihn als Linearkombination schreiben kann.

Zur Eindeutigkeit:

Angenommen, es gäbe eine witere Darstellung [mm] \vektor{u_1\\\vdots\\u_n}= x_1e_1+ ...+x_ne_n. [/mm]

Es folgt [mm] \vektor{u_1\\\vdots\\u_n}=\vektor{x_1\\\vdots\\x_n} [/mm]  ==> [mm] u_1=x_1 [/mm] und ... und [mm] u_n=x_n. [/mm]

Gruß v. Angela




Bezug
                
Bezug
linearkombinationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Di 12.05.2009
Autor: Fawkes

vielen dank für deine antwort :) genauso hab ich die aufgabe auch gemacht nur wusste ich leider nich wie ich das hier so schön hingekommen wie du es gemacht hast und da hab ich halt einfach die kleine rechenstory geschrieben ;)  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]