matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlineares homogenes DGL-System
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - lineares homogenes DGL-System
lineares homogenes DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineares homogenes DGL-System: linear, homogen, System, DGL
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 13.08.2011
Autor: paulpanter

Aufgabe
Guten Vormittag,

ich habe eine schnelle frage zu diesem DGL-System:

y' = [mm] \pmat{ 0 & 2 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 0 }*y [/mm]

Ich soll ein reelles Fundamentalsystem angeben.

Nun das Vorgehen ist relativ klar bis auf einen Punkt. Was mache ich mit komplexen Eigenwerten, Eigenvektoren.

In meinem Skript steht in so einem Fall tue man folgendes:

Ist [mm] \lambda_j [/mm] ein komplexer Eigenwert und es gilt [mm] \lambda_k [/mm] = [mm] \overline{\lambda_j} [/mm] wähle y(t) := [mm] Re(e^{\lambda_j*t}*b_j) [/mm] und y(t) := [mm] Im(e^{\lambda_j*t}*b_j) [/mm] als Elemente des Fundamentalsystems.

Die komplexen Eigenwerte und Eigenräume hier sind:

komplexe Eigenwerte: { 1-i ;  1+i }

Eigenräume:

zum Eigenwert 1-i:
   [mm] \vektor{2i \\ 1+i \\ 1} [/mm]

zum Eigenwert 1+i:
   [mm] \vektor{-2i \\ 1-i \\ 1} [/mm]

Kann mir jetzt einer erklären, wie man jetzt mit obiger Formel nun umgeht?

Mein Ansatz für den Realteil:

[mm] Re(e^{(1+i)*t}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t+it}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*e^{it}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*(cos(t)+i*sin(t))*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*(cos(t)*\vektor{-2i \\ 1-i \\ 1}+i*sin(t)*\vektor{-2i \\ 1-i \\ 1})) [/mm]

Ich weiß nicht, wie man an den Realteil kommt :(

        
Bezug
lineares homogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Sa 13.08.2011
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
$ e^{t}(\cdot{}(cos(t)+i\cdot{}sin(t))\cdot{}\vektor{-2i \\ 1-i \\ 1}) $ = e^{t}*\vektor{-2i*cost+2sint \\ cost+2sint+i*(-cost+sint \\ cost+isint})=
e^{t}*\vektor{2sint \\ cost+2sint \\ cost})+i*e^{t}*\vektor{-2cost\\sint-cost\\sint)
kannst du jetzt den Realteil finden und das Ergebnis dann als \vec{a}*sint+\vec{b}*cost   schreiben?
es geht auch indem du direkt die vektoren in ihrer Re und Im aufteilst.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]