lineare gleichungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:53 Mo 30.10.2006 | Autor: | ruya |
Aufgabe | Bestimmen Sie und skizzieren Sie falls möglich geometrisch alle Lösungen der folgenden Gleichungen, wobei x,y,z reelle Zahlen sind:
1. x=y und 2y=z
2. 3x-4y-0,5z=0
3. x-y=0 und y-z=1 und z-x=2 |
Hi leute,
bei dieser aufgabe bräuchte ich einen kleinen denkanstoß. was ist denn erwartet? ich glaube nämlich, dass ich die aufgabenstellung nicht richtig verstanden hab.
für jede hilfe wäre ich dankbar!!
|
|
|
|
Hallo ruya,
> Bestimmen Sie und skizzieren Sie falls möglich geometrisch
> alle Lösungen der folgenden Gleichungen, wobei x,y,z reelle
> Zahlen sind:
> 1. x=y und 2y=z
> 2. 3x-4y-0,5z=0
> 3. x-y=0 und y-z=1 und z-x=2
> Hi leute,
>
> bei dieser aufgabe bräuchte ich einen kleinen denkanstoß.
> was ist denn erwartet? ich glaube nämlich, dass ich die
> aufgabenstellung nicht richtig verstanden hab.
>
> für jede hilfe wäre ich dankbar!!
Vermutlich sollst du Lösungen für die Gleichungen finden! Für die erst ergäbe sich z. B.: z=2, x=y=1. Dann hast du beide angegebenen Gleichungen erfüllt. Es würde aber auch passen: z=4, x=y=2. Und so gibt es noch viele andere Möglichkeiten. Die sollst du alle angeben (da es in diesem Fall unendlich viele sind, musst du da eine geeignete Schreibweise für finden, da du nicht unendlich viele aufzählen kannst ). Und dann sollst du das Ganze noch zeichnen.
Hilft dir das weiter?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:23 Di 31.10.2006 | Autor: | ruya |
ja, das hab ich mir auch gedacht mit den allgemeinen lösungen. aber wie soll ich das verallgemeinern? soll ich das dann so aufschreiben: x=y=0,5z? und wie soll ich das ganze dann auch noch verallgemeinert aufzeichnen?
|
|
|
|
|
Hi, ruya,
> Bestimmen Sie und skizzieren Sie falls möglich geometrisch
> alle Lösungen der folgenden Gleichungen, wobei x,y,z reelle
> Zahlen sind:
> 1. x=y und 2y=z
> 2. 3x-4y-0,5z=0
> 3. x-y=0 und y-z=1 und z-x=2
> bei dieser aufgabe bräuchte ich einen kleinen denkanstoß.
> was ist denn erwartet? ich glaube nämlich, dass ich die
> aufgabenstellung nicht richtig verstanden hab.
Also für mich gehört die Aufgabe zur "Analytischen Geometrie" des [mm] \IR^{3}.
[/mm]
Z.B. Aufgabe 1:
Beide Gleichungen stellen Ebenen dar und zwar: x - y = 0 und 2y - z = 0
und Du sollst die Schnittgerade ermitteln.
Zeichnerisch musst Du dazu beide Ebenen in einem xyz-Koordinatensystem skizzieren und zwei Schnittpunkte von Spurgeraden ermitteln, die Du dann miteinander verbindest; dann hast Du die Schnittgerade.
Rechnerisch geht es so: Das Gleichungssystem ist ja unterbestimmt (2 Gleichungen, aber 3 Unbekannte).
Daher kannst Du eine Unbekannte als Parameter verwenden, z.B.: y= [mm] \lambda.
[/mm]
Dann erhältst Du: x = [mm] \lambda, [/mm] z = [mm] 2*\lambda.
[/mm]
Vektoriell geschrieben: L = [mm] \{ \vec{x} = \lambda*\vektor{1 \\ 1 \\ 2} \}
[/mm]
Analog die beiden anderen Aufgaben!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:50 Di 31.10.2006 | Autor: | ruya |
diese frage hatten wir auch schon gestellt, ob es was mit vektoren zu tun hat. es hat nichts damit zu tun. also kann doch das nicht stimmen was du geschrieben hast oder?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:42 Di 31.10.2006 | Autor: | Zwerglein |
Hi, ruya,
was ich geschrieben habe stimmt auf jeden Fall!
Die Frage ist nur, ob Du die Lösungsmenge so hinschreiben musst oder die Lösungen für x, y und z einfach so stehen lässt: x = [mm] \lambda, [/mm] ...
Zudem: Wenn Du's zeichnerisch lösen sollst, MUSST Du ein 3-dimensionales KoSy hernehmen und die Lösung auf dem beschriebenen Wege bestimmen; ergo: Geometrie!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:18 Di 31.10.2006 | Autor: | ruya |
hmm, jetzt bin ich irritiert... ich frag meine tutorin morgen nochmal um was es dort geht. danke für dein hinweis
|
|
|
|